High Resolution Optical Microscopy Will Play a Major Role in Functional Assessments and the Prevention of Disease

2000 ◽  
Vol 6 (S2) ◽  
pp. 834-835
Author(s):  
Robert W. Bradford, Chairman ◽  
Curriculum Oversight

The typical aging processes can be characterized by a gradual alteration and essential breakdown of the functional systems of the body. Numerous factors play important roles in the alterations of these pathways from biochemical individuality and genetic predisposition to environmental insults and deficiency states.1 Clinical research, as but one example, has clearly documented the role of free radicals (ROS) or oxidative injury in disease and aging affecting the body's basic cellular structures.The objective of functional or health assessments is to be able to detect in vivo stresses and imbalances in the biological systems, while the patient is asymptomatic, so that early therapeutic intervention can resolve the problems prior to disease onset or accelerated aging. The ability to assess risk factors and treat the sub-clinical metabolic toxicities, deficiency states, hormonal imbalances, oxidative injury (ROS), immunodeficiencies, enzyme down regulations, antioxidant status, metal toxicities, cardiovascular stresses, organ reserves/stresses and detox systems in a low-complexity, cost-effective office procedure is true preventive medicine.

2017 ◽  
Author(s):  
Matthew G. Street ◽  
Cristin G. Welle ◽  
Pavel A. Takmakov

AbstractObjectiveNovel therapeutic applications for neural implants require miniaturized devices. Pilot clinical studies suggest that rapid failure of the miniaturized neural implants in the body presents a major challenge for this type of technology. Miniaturization imposes stricter requirements for reliability of materials and designs. Evaluation of neural implant performance over clinically relevant timescales presents time-and cost-prohibitive challenges for animal models.ApproachIn vitro reactive accelerated aging (RAA) was developed to expedite durability testing of these devices. RAA simulates an aggressive physiological environment associated with an immune response and implicated in device failure. It uses hydrogen peroxide, which mimics reactive oxygen species (ROS), and high temperature to accelerate chemical reactions that lead to device degradation. RAA accurately simulates the degradation pattern of neural implants observed in vivo, but requires daily maintenance and is prone to variability in performance.Main resultsThis work introduces automated reactive accelerated aging (aRAA) that is compatible with multiplexing. The core of aRAA is electrochemical detection for feedback control of hydrogen peroxide concentration, implemented with simple off-the shelf components.SignificanceaRAA allows multiple parallel experiments for a high-throughput optimization of reactive aging conditions to more quickly and more rigorously simulate the in vivo environment. aRAA is a cost-effective tool for rapid in vitro evaluation of durability of neural implants, ultimately expediting the development of a new generation of miniaturized devices with long functional lifespans.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1372 ◽  
Author(s):  
Renae J. Stefanetti ◽  
Sarah Voisin ◽  
Aaron Russell ◽  
Séverine Lamon

The forkhead box O3 (FOXO3, or FKHRL1) protein is a member of the FOXO subclass of transcription factors. FOXO proteins were originally identified as regulators of insulin-related genes; however, they are now established regulators of genes involved in vital biological processes, including substrate metabolism, protein turnover, cell survival, and cell death. FOXO3 is one of the rare genes that have been consistently linked to longevity in in vivo models. This review provides an update of the most recent research pertaining to the role of FOXO3 in (i) the regulation of protein turnover in skeletal muscle, the largest protein pool of the body, and (ii) the genetic basis of longevity. Finally, it examines (iii) the role of microRNAs in the regulation of FOXO3 and its impact on the regulation of the cell cycle.


2020 ◽  
Vol 30 (11) ◽  
pp. 336-339
Author(s):  
Lucy Godfrey

The use of transfused blood, be it from an allogenic (donor) or autologous (same patient) source, is not a new treatment and in fact has been experimented with since the mid 1800s. The role of cell salvage and re-infusion of a patient’s own blood, however, has only begun to gain real popularity in the last 20 years, after the undertaking of several large scale meta-analyses which have shown that not only is autologous transfusion no less efficacious when compared to allogenic transfusion, but also potentially safer for a number of reasons. Autologous transfusion is also more cost effective overall and potentially quicker to initiate in an emergency situation. Despite the body of evidence to support the use of salvaged blood for transfusion, hesitation around its use still persists, with staff apprehension around set up of cell salvage equipment and general underestimation of intraoperative blood loss being key factors in its underuse.


Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 130 ◽  
Author(s):  
Mohamed Elmonem ◽  
Sante Berlingerio ◽  
Lambertus van den Heuvel ◽  
Peter de Witte ◽  
Martin Lowe ◽  
...  

The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.


2016 ◽  
Vol 113 (36) ◽  
pp. 10198-10203 ◽  
Author(s):  
Marcel F. Leyton-Jaimes ◽  
Clara Benaim ◽  
Salah Abu-Hamad ◽  
Joy Kahn ◽  
Amos Guetta ◽  
...  

Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons in the brain and spinal cord. It has been suggested that the toxicity of mutant SOD1 results from its misfolding and accumulation on the cytoplasmic faces of intracellular organelles, including the mitochondria and endoplasmic reticulum (ER) of ALS-affected tissues. Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit the accumulation of misfolded SOD1 and its binding to intracellular membranes, but the role of endogenous MIF in modulating SOD1 misfolding in vivo remains unknown. To elucidate this role, we bred MIF-deficient mice with SOD1G85R mice, which express a dismutase-inactive mutant of SOD1 and are considered a model of familial ALS. We found that the accumulation of misfolded SOD1, its association with mitochondrial and ER membranes, and the levels of sedimentable insoluble SOD1 aggregates were significantly higher in the spinal cords of SOD1G85R-MIF−/− mice than in their SOD1G85R-MIF+/+ littermates. Moreover, increasing MIF expression in neuronal cultures inhibited the accumulation of misfolded SOD1 and rescued from mutant SOD1-induced cell death. In contrast, the complete elimination of endogenous MIF accelerated disease onset and late disease progression and shortened the lifespan of the SOD1G85R mutant mice. These findings indicate that MIF plays a significant role in the folding and misfolding of SOD1 in vivo, and they have implications for the potential therapeutic role of up-regulating MIF within the nervous system to modulate the selective accumulation of misfolded SOD1.


2018 ◽  
Vol 48 (1) ◽  
pp. 16-29 ◽  
Author(s):  
Richard Frank Tester ◽  
Farage H. Al-Ghazzewi

Purpose This paper aims to focus on the utilisation of pre- and probiotics for oral care and the state of knowledge at this time. Design/methodology/approach Pre- and probiotics describe beneficial carbohydrates and microbiota, respectively, for optimal gut health. Carbohydrates provide energy selectively for the gut-friendly bacteria. The use of both carbohydrates and bacteria is, however, being expanded into other areas of the body – including the skin, vagina and oral cavity – for health-related applications. Findings There is increased interest in both pre- and probiotics for oral care products. The importance of oral microflora and their selective substrates is discussed against a background of contemporary oral care approaches. The issues and benefits are discussed in this review. Originality/value It is clear that consumption of prebiotics and probiotics may play a role as potential prophylactic or therapeutic agents for reducing the presence of organisms in the mouth associated with tooth decay. To confirm a beneficial effect of pre- and probiotics further in vivo studies involving healthy human volunteers should be considered.


Medicines ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 12
Author(s):  
Akshay Anand ◽  
Gurkeerat Kaur ◽  
Sridhar Bammidi ◽  
Deepali Mathur ◽  
Priya Battu ◽  
...  

Background: The deprivation of oxygen reaching the tissues (also termed as hypoxia) affects the normal functioning of the body. This results in development of many diseases like ischemia, glaucoma, MCI (Mild Cognitive Impairment), pulmonary and cerebral edema, stress and depression. There are no effective drugs that can treat such diseases. Despite such failure, alternative interventions such as mind-body techniques (MBTs) have not been adequately investigated. Methods: The first part of this review has been focused on philosophical aspects of various MBTs besides evolving an ayurgenomic perspective. The potential of MBTs as a preventive non-pharmacological intervention in the treatment of various general and hypoxic pathologies has been further described in this section. In the second part, molecular, physiological, and neuroprotective roles of MBTs in normal and hypoxic/ischemic conditions has been discussed. Results: In this respect, the importance of and in vivo studies has also been discussed. Conclusions: Although several studies have investigated the role of protective strategies in coping with the hypoxic environment, the efficacy of MBTs at the molecular level has been ignored.


Sign in / Sign up

Export Citation Format

Share Document