Synthesis of CaCO3 Thin Films via a Bioinspired Strategy: Cooperative Template-Inhibition

2000 ◽  
Vol 6 (S2) ◽  
pp. 1070-1071
Author(s):  
Guofeng Xu ◽  
Nan Yao ◽  
Ilhan A. Aksay ◽  
John T. Groves

Exquisite control over the morphology of inorganic materials is well demonstrated in biological mineralization. An elegant example is the mulluscan nacre, in which aragonite (a polymorph of calcium carbonate) forms as thin films of about 0.5|im thick between organic matrices as a result of an interplay between templating and inhibition (Figure 1). Not surprising, biomineralization has inspired many recent research efforts in biomimetic materials synthesis, especially the synthesis of inorganic thin films. The majority of these efforts have exclusively focused on exploring the promoting effect on mineral formation by templates. A major drawback of this approach is the lack of control over the mineral growth in the direction normal to the template, which often leads to the formation of discrete patches instead of a true film. In this report, we describe a strategy which takes advantage of the interplay between templating and inhibiting, as utilized by organisms, to synthesize macroscopic and continuous CaCO3 thin films.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Liu ◽  
Jiajun Wang

The design of multifunctional thin films holds the key to manipulate the surface and interface structure of the electrode and electrolyte in rechargeable batteries and achieve desirable performance for various applications. Molecular layer deposition (MLD) is an emerging thin-film technique with exclusive advantages of depositing hybrid organic-inorganic materials at a nanoscale level and with well tunable and unique properties that conventional thin films might not have. Herein, we provide a timely mini-review on the most recent progress in the surface chemistry and MLD process of novel hybrid organic-inorganic thin films and their applications as the anode, cathode, and solid electrolytes in lithium-ion batteries. Perspectives for future research in designing new MLD process and precursors, enriching MLD material library, and expanding their potential applications in other energy storage systems, are discussed at the end.


2019 ◽  
Vol 11 (44) ◽  
pp. 41516-41522
Author(s):  
Hong Je Choi ◽  
Woosun Jang ◽  
Young Eun Kim ◽  
Aloysius Soon ◽  
Yong Soo Cho

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1364
Author(s):  
M. Carmen Herrera-Beurnio ◽  
Jesús Hidalgo-Carrillo ◽  
Francisco J. López-Tenllado ◽  
Juan Martin-Gómez ◽  
Rafael C. Estévez ◽  
...  

In the last few years, researchers have focused their attention on the synthesis of new catalyst structures based on or inspired by nature. Biotemplating involves the transfer of biological structures to inorganic materials through artificial mineralization processes. This approach offers the main advantage of allowing morphological control of the product, as a template with the desired morphology can be pre-determined, as long as it is found in nature. This way, natural evolution through millions of years can provide us with new synthetic pathways to develop some novel functional materials with advantageous properties, such as sophistication, miniaturization, hybridization, hierarchical organization, resistance, and adaptability to the required need. The field of application of these materials is very wide, covering nanomedicine, energy capture and storage, sensors, biocompatible materials, adsorbents, and catalysis. In the latter case, bio-inspired materials can be applied as catalysts requiring different types of active sites (i.e., redox, acidic, basic sites, or a combination of them) to a wide range of processes, including conventional thermal catalysis, photocatalysis, or electrocatalysis, among others. This review aims to cover current experimental studies in the field of biotemplating materials synthesis and their characterization, focusing on their application in heterogeneous catalysis.


Author(s):  
Catalin Zaharia

Currently, the active materials used for the fabrication of solar cells are mainly inorganic. Materials such as silicon (Si), gallium-arsenide (GaAs), cadmium-telluride (CdTe), and cadmium-indium-selenide (CIS). Nevertheless, the large production cost for the silicon solar cells is one of the major drawback in this field. This chapter is dedicated to a critical presentation of another type of photovoltaics, called polymer, or plastic, solar cell technology. Polymer solar cells have attracted significant attention in the past few years due to their potential of providing environmentally safe, lightweight, flexible, and efficient solar cells.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000175-000182
Author(s):  
Carol Putman ◽  
Rachel Cramm Horn ◽  
Ambrose Wolf ◽  
Daniel Krueger

Abstract Low temperature cofired ceramic (LTCC) has been established as an excellent packaging technology for high reliability, high density microelectronics. The functionality and robustness of rework has been increased through the incorporation of a Physical Vapor Deposition (PVD) thin film Ti/Cu/Pt/Au metallization. PVD metallization is suitable for RF (Radio Frequency) applications as well as digital systems. Adhesion of the Ti “adhesion layer” to the LTCC as-fired surface is not well understood. While past work has established extrinsic parameters for delamination mechanisms of thin films on LTCC substrates, there is incomplete information regarding the intrinsic (i.e. thermodynamic) parameters in literature. This paper analyzes the thermodynamic favorability of adhesion between Ti, Cr, and their oxides coatings on LTCC (assumed as amorphous silica glass and Al2O3). Computational molecular calculations are used to determine interface energy as an indication of molecular stability over a range of temperatures. The end result will expand the understanding of thin film adhesion to LTCC surfaces and assist in increasing the long-term reliability of the interface bonding on RF microelectronic layers.


2016 ◽  
Vol 13 (3) ◽  
pp. 95-101 ◽  
Author(s):  
Carol Putman ◽  
Rachel Cramm Horn ◽  
J. Ambrose Wolf ◽  
Daniel Krueger

Low temperature cofired ceramic (LTCC) has been established as an excellent packaging technology for high-reliability, high-density microelectronics. The functionality and robustness of rework have been increased through the incorporation of a physical vapor deposition (PVD) thin film Ti/Cu/Pt/Au metallization. PVD metallization is suitable for radio frequency (RF) applications as well as digital systems. Adhesion of the Ti “adhesion layer” to the LTCC as-fired surface is not well understood. Although previous work has established extrinsic parameters for delamination mechanisms of thin films on LTCC substrates, there is incomplete information regarding the intrinsic (i.e., thermodynamic) parameters in the literature. This article analyzes the thermodynamic favorability of adhesion between Ti, Cr, and their oxide coatings on LTCC (assumed as amorphous silica glass and Al2O3). Computational molecular calculations are used to determine interface energy as an indication of molecular stability between pair of materials at specific temperature. The end result will expand the understanding of thin film adhesion to LTCC surfaces and assist in increasing the long-term reliability of the interface bonding on RF microelectronic layers.


2020 ◽  
Vol 49 (25) ◽  
pp. 8710-8721
Author(s):  
Arbresha Muriqi ◽  
Michael Nolan

First principles investigation of the molecular mechanism of the growth of hybrid organic–inorganic thin films of aluminium alkoxides, known as “alucones”.


Sign in / Sign up

Export Citation Format

Share Document