Malathion-Induced Granulosa Cell Apoptosis in Caprine Antral Follicles: An Ultrastructural and Flow Cytometric Analysis

2014 ◽  
Vol 20 (6) ◽  
pp. 1861-1868 ◽  
Author(s):  
Jitender K. Bhardwaj ◽  
Priyanka Saraf

AbstractOrganophosphate pesticides (OPs) like malathion interfere with normal ovarian function resulting in an increased incidence of atresia and granulosa cell apoptosis that plays a consequential role in the loss of ovarian follicles or follicular atresia. The aim of present study was to assess malathion-induced (100 nM) reproductive stress, ultrastructural damage and changes in apoptosis frequency in ovarian granulosa cells of antral follicles. Transmission electron microscopy (TEM) was employed for ultrastructural characterization, oxidative stress was evaluated using thiobarbituric acid reactive substances (TBARS) assay to measure lipid peroxidation, and apoptosis was quantified via flow cytometry. By TEM, apoptosis was identified by the presence of an indented nuclear membrane with blebbing, pyknotic crescent-shaped fragmented nuclei, increased vacuolization, degenerating mitochondria, and lipid droplets. The results indicate a significant increase in malondialdehyde (MDA) level (nmols/g wet tissue) at a 100 nM dose of malathion i.e. 7.57±0.033*, 8.53±0.12*, and 12.87±0.78** at 4, 6, or 8 h, respectively, as compared with controls (6.07±0.033, p<0.01*, p<0.05**) showing a positive correlation between malathion-induced lipid peroxidation and percentage of granulosa cell apoptosis (r=1; p<0.01). The parallel use of these three methods enabled us to determine the role of malathion in inducing apoptosis as a consequence of cytogenetic damage and oxidative stress generated in granulosa cells of antral follicles.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ling Zhou ◽  
Xuemei Ding ◽  
Jianping Wang ◽  
Shiping Bai ◽  
Qiufeng Zeng ◽  
...  

The storage and preparation of corn for animal feed inevitably lead to lipid and protein peroxidation. Granulosa cells play an important role in follicular development in the ovaries, and hen laying productivity is likely to be dependent on follicle health and number. We hypothesized that oxidized oil and protein induce apoptosis via oxidative stress in laying hen granulosa cells. A sample of 360 38-week-old Lohmann commercial laying hens was used in a 2×2 factorial design for 8 weeks. Dietary treatments included dietary oil (fresh corn oil (FO) or oxidized corn oil (OO)) and corn gluten meal (fresh corn gluten meal (FP) or oxidized corn gluten meal (OP)). Productivity, ovarian histology, granulosa cell apoptosis, and indicators of oxidative stress were evaluated in all groups. Both dietary OO and OP decreased egg production and the average daily feed intake (ADFI) of laying hens. Flow cytometry, TUNEL, and real-time PCR revealed that both dietary OO and OP induced granulosa cell apoptosis in prehierarchical and hierarchical follicles. Furthermore, dietary OO and OP caused oxidative stress in prehierarchical and hierarchical follicles, as indicated by the downregulation of antioxidant-related-gene expression. Moreover, forkhead box O1 (FoxO1), extracellular regulated protein kinase (ERK), and c-Jun NH2 kinase (JNK) are involved in potential apoptosis regulation pathways in the granulosa cells of laying hens fed OO and OP, as indicated by the upregulation of FoxO1 expression and downregulation of ERK/JNK expression. These results indicate that OO and OP induce granulosa cell apoptosis via oxidative stress, and the combined use of OO and OP aggravates the adverse effects of oxidative stress in laying hens.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Xiuru Liang ◽  
Zhengjie Yan ◽  
Weiwei Ma ◽  
Yi Qian ◽  
Xiaofei Zou ◽  
...  

AbstractPeroxiredoxin 4 (Prdx4), a member of the Prdx family, is a vital ER-resident antioxidant in cells. As revealed in our previous study, Prdx4 expression was detected in ovarian granulosa cells and was closely related to ovarian function. This research aimed to explore the effect and underlying molecular mechanism of the protective role of Prdx4 against d-gal-induced ovarian ageing in mice. The d-gal-induced ovarian ageing model has been extensively used to study the mechanisms of premature ovarian failure (POF). In this study, adult Prdx4−/− and wild-type mice were intraperitoneally injected with d-gal (150 mg/kg/day) daily for 6 weeks. Ovarian function, granulosa cell apoptosis, oxidative damage and ER stress in the ovaries were evaluated in the two groups. Ovarian weight was significantly lower, the HPO axis was more strongly disrupted, and the numbers of atretic follicles and apoptotic granulosa cells were obviously higher in Prdx4−/− mice. In addition, Prdx4−/− mice showed increased expression of oxidative damage-related factors and the ovarian senescence-related protein P16. Moreover, the levels of the proapoptotic factors CHOP and activated caspase-12 protein, which are involved in the ER stress pathway, and the level of the apoptosis-related BAX protein were elevated in the ovaries of Prdx4−/− mice. Thus, d-gal-induced ovarian ageing is accelerated in Prdx4−/− mice due to granulosa cell apoptosis via oxidative damage and ER stress-related pathways, suggesting that Prdx4 is a protective agent against POF.


2020 ◽  
pp. 096032712096076
Author(s):  
D Deng ◽  
J Yan ◽  
Y Wu ◽  
K Wu ◽  
W Li

Previous evidences have indicated that granulosa cells play a critical role in follicular growth. Hydrogen peroxide (H2O2)-induced oxidative stress has been associated with ovarian granulosa cell apoptosis and ovarian function. Recently, a study highlighted the protective role of morroniside against H2O2-induced damage. In this study, we aimed to investigate the effects of morroniside on H2O2-stimulated rat ovarian granulosa cells and its underlying molecular mechanisms. Our results showed that H2O2 treatment suppressed cell survival and increased apoptosis in rat granulosa cells, while treatment with morroniside markedly increased H2O2-induced granulosa cell survival in a dose-dependent manner (0, 10, 50 and 100 µM). Moreover, treatment with 50 µM morroniside impeded H2O2-induced cell apoptosis. An elevation in intracellular ROS, MDA, SOD, GSH-Px, and CAT level was observed in H2O2-induced granulosa cells; however, this effect was abrogated by morroniside treatment. Further studies suggested that administration of morroniside inhibited H2O2-induced granulosa cell apoptosis and caspase-3 activity. In addition, after morroniside treatment of H2O2-stimulated granulosa cells, autophagy-related protein (LC3-II/LC3-I ratio) and beclin-1 expression was decreased and p62 level was increased. Interestingly, we found that morroniside treatment activated the PI3K/AKT/mTOR pathway in H2O2-stimulated granulosa cells. Finally, we showed that treatment with PI3K and mTOR inhibitors reversed the protective effects of morroniside on H2O2-induced granulosa cells. Taken together, our data suggest that treatment with morroniside decreased apoptosis, autophagy, and oxidative stress in rat granulosa cells through the PI3K/AKT/mTOR pathway.


2011 ◽  
Vol 64 (7-8) ◽  
pp. 377-380 ◽  
Author(s):  
Aleksandra Novakov-Mikic ◽  
Snezana Brkic ◽  
Daniela Maric ◽  
Bojan Sekulic ◽  
Aleksandar Cetkovic ◽  
...  

Pre-eclampsia is characterized by increased lipid peroxidation and diminished antioxidant capacity. The aim of the study was to establish concentration of thiobarbituric acid reactive substances as a marker of lipid peroxidation in normal pregnancies and in pregnancies complicated with pre-eclampsia, and to estimate the possibility of using thiobarbituric acid reactive substances as a screening method for development of pre-eclampsia. The study was conducted at the Department of Obstetrics and Gynaecology, Clinical Centre of Vojvodina. The study included 57 singleton pregnancies, gestation >24 weeks, of which 29 were healthy pregnancies and 28 were with pre-eclampsia, defined as systolic arterial pressure of >90 mmHg, diastolic of >145 mmHg, and 24h proteinuria of >300mg. Thiobarbituric acid reactive substances concentrations evaluated by malondialdehyde equivalent standards (OxiSelect? TBARS Assay Kit (malondialdehyde Quantitation), Cell Biolabs? OxiSelect?) showed that oxidative stress was more evident in the group with pre-eclampsia, though not statistically significant (p= 0.107). There was no correlation of thiobarbituric acid reactive substance levels with gestation in either group. The differences between the level of thiobarbituric acid reactive substance concentrations in pre-eclampsia and healthy pregnancies indicate the possibility of using thiobarbituric acid reactive substances as a screening tool for the development of pre-eclampsia. Further studies with larger numbers of patients are needed in order to come to final conclusions.


2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2021 ◽  
Vol 169 ◽  
pp. 47-55
Author(s):  
Xinyan Zhang ◽  
Tong Yu ◽  
Xinyan Guo ◽  
Ruixue Zhang ◽  
Yanni Jia ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Sobia Manzoor ◽  
Ayesha Khan ◽  
Beena Hasan ◽  
Shamim Mushtaq ◽  
Nikhat Ahmed

Background: Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and activities of enzymatic and antioxidant systems in schizophrenia. Objectives: Present study focuses on identification of HNE-protein adducts and its related molecular consequences in schizophrenia pathology due to oxidative stress, particularly lipid peroxidation. Material and Methods: Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances (TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also estimated. Results: Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ± 1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects an increased lipid peroxidation (LPO). Conclusion: Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production. Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative stress in schizophrenia pathology.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
F Alam ◽  
R Rehman ◽  
N Farooqui ◽  
F Jehan ◽  
S H Abidi

Abstract Study question What is the effect of administration of Metformin on the oxidative stress (OS) levels in serum and primary human granulosa cell cultures of infertile females? Summary answer Metformin suppresses oxidative stress in serum and human granulosa cells and increases the expression of SIRT1 in OS induced environment. What is known already Oxidative stress (OS) is a resultant of mitochondrial dysfunction when it either fails to fight against the oxidants or the expression of the antioxidants is not sufficient. Cellular damage including DNA damage is a common resultant of oxidative stress. OS effects the oocyte maturation and moreover, the cleavage phase in the early embryonic stage. The raised levels of OS makers are hypothesized to compromise the nuclear maturation and the mitotic spindles of the maturing oocytes. Metformin seemed to decrease oxidative stress and improve insulin resistance, dyslipidaemia and endothelial dysfunction in PCOS patients Study design, size, duration This cross-sectional study was conducted from August 2017 – July 2019, at Aga Khan Hospital in collaboration with Australian Concept Infertility Medical Centre (ACIMC) on ten infertile patients undergoing egg retrieval after ethical approval from of Aga Khan Hospital (AKU-ERC–2018–0557–601). Participants/materials, setting, methods Serum samples were obtained and analysed. Follicular fluid of these subjects was collected for establishment of primary cell culture model of normal human granulosa cells (hGCs). Serum and hGC cultures were grouped as; a) control: treatment, b) Test1: H2O2 induced OS, and c) Test2: H2O2 induced OS treated with metformin. OS was estimated in all groups by Mishra method. The two Test groups were assessed for SIRT1 levels using quantitative PCR employing SIRT1 specific primers Main results and the role of chance With mean age of 32.04 ± 2.29 years the mean BMI was 27.61 ± 2.15 kg/m2. OS was induced and measured by an increase in optical density (OD) in hGC Test samples which showed 0.28 (0.16–0.40) OD when compared with control hGC samples 0.153 (0.09–0.23). There was a significant reduction in ODs after metformin treatment in the stress induced cells 0.182 (0.05–0.30). A similar pattern was observed in the serum samples in ODs; control: 0.105 (0.09–0.15), stress induced samples: 0.199 (0.19–0.20). and stress induced serum sample with metformin treatment: 0.1415 (0.06–0.18). The Ct values obtained to express the effect of metformin on SIRT1 levels, for OS induced (Test1) and OS induced metformin treated (Test2) cells were found to be 29.12 and 26.42, respectively. We also observed a significant (85%) difference in the fold change of SIRT1 expression between metformin treated and untreated cells. Limitations, reasons for caution Small sample size is the limitation of this study. The impact of metformin on cell cultures due to different causes of infertility could not be ascertained Wider implications of the findings: Metformin suppresses oxidative stress in serum and human granulosa cells and increases the expression of SIRT1 in OS induced environment, therefore, metformin may be considered as a treatment of oxidative stress in infertile patients. Randomized control trial with large sample size is recommended to confirm the cause and effect relationship. Trial registration number Not applicable


2019 ◽  
Vol 11 (6) ◽  
pp. 401
Author(s):  
Patricia Wolkmer ◽  
Andressa M. G. Stumm ◽  
Luiz F. K. Borges ◽  
Eduarda P. T. Ferreira ◽  
Bruna Favaretto ◽  
...  

This experiment aims to evaluate the correlation between lipid peroxidation levels in serum and seminal plasma in equines. Also, it investigates the lipid peroxidation in extended semen samples and its effects and sperm motility during a 72 hr refrigeration period. Blood and semen were collected from fertile Crioulo stallions. Serum and seminal plasma lipid peroxidation levels were analyzed by thiobarbituric acid reactive substances (TBARS) immediately after semen collection. After addition of extender (hour = 0), diluted semen was refrigerated and stored at 5 &deg;C. Semen analyses, TBARS and catalase activity were performed in extended semen at 0, 24, 48, and 72 hours. We noted that levels of plasma lipid peroxidation can be used as an indicative of seminal oxidative stress. Also, lipid peroxidation does not increase substantially during semen storage. Lipid peroxidation and the antioxidant enzyme catalase do not seem to be the major cause of loss and motility and consequently reduction in fertility in stallion semen during storage for 72 h at 5 &deg;C.


Sign in / Sign up

Export Citation Format

Share Document