scholarly journals The Effects of β-Lactam Antibiotics on Surface Modifications of Multidrug-Resistant Escherichia coli: A Multiscale Approach

2019 ◽  
Vol 25 (1) ◽  
pp. 135-150 ◽  
Author(s):  
Samuel C. Uzoechi ◽  
Nehal I. Abu-Lail

AbstractPossible multidrug-resistant (MDR) mechanisms of four resistant strains of Escherichia coli to a model β-lactam, ampicillin, were investigated using contact angle measurements of wettability, crystal violet assays of permeability, biofilm formation, fluorescence imaging, and nanoscale analyses of dimensions, adherence, and roughness. Upon exposure to ampicillin, one of the resistant strains, E. coli A5, changed its phenotype from elliptical to spherical, maintained its roughness and biofilm formation abilities, decreased its length and surface area, maintained its cell wall integrity, increased its hydrophobicity, and decreased its nanoscale adhesion to a model surface of silicon nitride. Such modifications are suggested to allow these cells to conserve energy during metabolic dormancy. In comparison, resistant strains E. coli D4, A9, and H5 elongated their cells, increased their roughness, increased their nanoscale adhesion forces, became more hydrophilic, and increased their biofilm formation upon exposure to ampicillin. These results suggest that these strains resisted ampicillin through biofilm formation that possibly introduces diffusion limitations to antibiotics. Investigations of how MDR bacterial cells modify their surfaces in response to antibiotics can guide research efforts aimed at designing more effective antibiotics and new treatment strategies for MDR bacterial infections.

Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 597
Author(s):  
Luca Pierantoni ◽  
Laura Andreozzi ◽  
Simone Ambretti ◽  
Arianna Dondi ◽  
Carlotta Biagi ◽  
...  

Urinary tract infections (UTIs) are among the most common bacterial infections in children, and Escherichia coli is the main pathogen responsible. Several guidelines, including the recently updated Italian guidelines, recommend amoxicillin-clavulanic acid (AMC) as a first-line antibiotic therapy in children with febrile UTIs. Given the current increasing rates of antibiotic resistance worldwide, this study aimed to investigate the three-year trend in the resistance rate of E. coli isolated from pediatric urine cultures (UCs) in a metropolitan area of northern Italy. We conducted a retrospective review of E. coli-positive, non-repetitive UCs collected in children aged from 1 month to 14 years, regardless of a diagnosis of UTI, catheter colonization, urine contamination, or asymptomatic bacteriuria. During the study period, the rate of resistance to AMC significantly increased from 17.6% to 40.2% (p < 0.001). Ciprofloxacin doubled its resistance rate from 9.1% to 16.3% (p = 0.007). The prevalence of multidrug-resistant E. coli rose from 3.9% to 9.2% (p = 0.015). The rate of resistance to other considered antibiotics remained stable, as did the prevalence of extended spectrum beta-lactamases and extensively resistant E. coli among isolates. These findings call into question the use of AMC as a first-line therapy for pediatric UTIs in our population, despite the indications of recent Italian guidelines.


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Sathi Mallick ◽  
Shanti Kiran ◽  
Tapas Kumar Maiti ◽  
Anindya S. Ghosh

Escherichia coli low-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of Escherichia coli LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation. Therefore, this study includes the assessment of physiological characteristics of E. coli CS109 LMM PBP deletion mutants to address biofilm formation abilities, viability and surface adhesion. Finally, EPS from parent CS109 and its ΔPBP4 and ΔPBP5 mutants were purified and analysed for sugars present. Deletions of LMM PBP reduced biofilm formation, bacterial adhesion and their viability in biofilms. Deletions also diminished EPS production by ΔPBP4 and ΔPBP5 mutants, purification of which suggested an increased overall negative charge compared with their parent. Also, EPS analyses from both mutants revealed the appearance of an unusual sugar, xylose, that was absent in CS109. Accordingly, the reason for reduced biofilm formation in LMM PBP mutants may be speculated as the subsequent production of xylitol and a hindrance in the standard flow of the pentose phosphate pathway.


Author(s):  
Taniya Bardhan ◽  
Madhurima Chakraborty ◽  
Bornali Bhattacharjee

Indiscriminate use of antibiotics has resulted in a catastrophic increase in the levels of antibiotic resistance in India. Hospitals treat critical bacterial infections and thus can serve as reservoirs of multidrug resistant (MDR) bacteria. Hence, this study was conducted to gauge the prevalence patterns of MDR bacteria in hospital wastewater. Water samples collected from 11 hospitals and 4 environmental sources belonging to 5 most-densely populated districts of West Bengal, India were grown on MacConkey and Eosin Methylene Blue agar. A total of 84 (hospital-associated = 70, environmental water sources = 14) isolates were characterized. The predominant species found in water from hospital-associated areas (HAA) were Acinetobacter baumannii (22.9%), Escherichia coli (28.6 %), and Klebsiella pneumoniae (25.7%). Greater than 75% of the HAA isolates were found to be mcr-1 gene negative and colistinresistant. Meropenem non-susceptibility was also high among the HAA isolates at 58.6%, with the presence of the carbapenemase gene and blaNDM in 67.1% of the non-susceptible isolates. Among the three predominant species, significantly higher numbers of E. coli isolates were found to be non-susceptible to meropenem ((80%), p-value = 0.00432) and amikacin (AK (90%), p-value = 0.00037). This study provides evidence for the presence of high numbers of colistin-resistant and carbapenem-hydrolyzing Proteobacteriain hospital wastewater.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pin-Chieh Wu ◽  
Ming-Fang Cheng ◽  
Wan-Ling Chen ◽  
Wan-Yu Hung ◽  
Jiun-Ling Wang ◽  
...  

Colistin is the last resort antimicrobial for treating multidrug-resistant gram-negative bacterial infections. The plasmid-mediated colistin resistance gene, mcr-1, crucially influences colistin’s resistance transmission. Human fecal carriages of mcr-1-positive Escherichia coli (E. coli) were detected in many regions worldwide; however, only a few studies have focused on children. Therefore, we identified the prevalence and risk factors of mcr-1-positive E. coli in fecal carriages among community children in Southern Taiwan. In this study, 510 stool samples were collected from April 2016 to August 2019 from the pediatric department at a medical center in Southern Taiwan. These samples were collected within 3 days after admission and were all screened for the presence of the mcr-1 gene. Diet habits, travel history, pet contact, and medical history were also obtained from participants to analyze the risk factors of their fecal carriages to mcr-1-positive E. coli. Antimicrobial susceptibility testing was determined using the VITEK 2 system and the broth microdilution test. Twelve mcr-1-positive E. coli. were isolated from 2.4% of the fecal samples. Through multivariate analysis, frequent chicken consumption (at least 3 times per week) had a significantly positive association with the presence of mcr-1-positive E. coli in fecal carriages (adjust odds ratio 6.60, 95% confidence interval1.58– 27.62, p = 0.033). Additionally, multidrug resistance was more common in mcr-1-positive E. coli. (75.0% vs. 39.5%, p = 0.031) than in non-mcr-1-positive Escherichia coli. Furthermore, the percentage of extraintestinal pathogenic E. coli in mcr-1-positive isolates was 83.3%. Some multi-locus sequence types in our mcr-1-positive E. coli were also similar to those isolated from food animals in the literature. The prevalence of fecal carriages of mcr-1-positive E. coli was low among community children in Southern Taiwan. Our data shows that chicken consumption with a higher frequency increases the risk of mcr-1-positive E. coli. in fecal carriages.


2019 ◽  
Vol 13 (06) ◽  
pp. 465-472
Author(s):  
Ulises Hernández-Chiñas ◽  
Alejandro Pérez-Ramos ◽  
Laura Belmont-Monroy ◽  
María E Chávez-Berrocal ◽  
Edgar González-Villalobos ◽  
...  

Introduction: Uropathogenic Escherichia coli (UPEC) are the main etiological agent of urinary tract infections (UTIs). Association between different serotypes and UTIs is known, however, some strains are incapable to be serotyped. The aim of this work was to study bthe phenotypical and genotypical characteristics of 113 non-typeable (NT) and auto-agglutinating (AA) E. coli strains, isolated from UTIs in children and adults. Methodology: The 113 UPEC strains were analyzed by PCR assays using specific primers to determine their serogroups, fimH, papC, iutA, sat, hlyCA and cnf1, virulence associated genes, and chuA, yjaA and TSPE4.C2 for phylogroup determination. Additionally, the diffusion disk method was performed to evaluate the antimicrobial resistance to 18 antimicrobial agents. Results: Using the PCR assay, 63% (71) of the strains were genotyped showing O25 and O75 as the most common serogroups. The virulence genes fimH (86%) and iutA (74%) were the most prevalent, in relation to the phylogroups the commensal (A and B1) and virulent (B2 and D) showed similar frequencies (P > 0.05). The antimicrobial susceptibility test showed a high percentage (73%) of multidrug-resistant strains. Conclusions: The genotyping allowed identifying the serogroup in many of the strains that could not be typed by traditional serology. The strains carried virulence genes and were multidrug-resistant in both, commensal and virulent phylogroups. Our findings revealed that, in addition to the classical UPEC serogroups, there are pathogenic serogroups not reported yet.


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Daekeun Hwang ◽  
Seung Min Kim ◽  
Hyun Jung Kim

Abstract Background Acid treatment is commonly used for controlling or killing pathogenic microorganisms on medical devices and environments; however, inadequate acid treatment may cause acid tolerance response (ATR) and offer cross-protection against environmental stresses, including antimicrobials. This study aimed to characterise an Escherichia coli strain that can survive in the acidic gastrointestinal environment. Results We developed an acid-tolerant E. coli O157:H7 ATCC 43889 (ATCC 43889) strain that can survive at pH 2.75 via cell adaptation in low pH conditions. We also performed RNA sequencing and qRT-PCR to compare differentially expressed transcripts between acid-adapted and non-adapted cells. Genes related to stress resistance, including kdpA and bshA were upregulated in the acid-adapted ATCC 43889 strain. Furthermore, the polymyxin resistance gene arnA was upregulated in the acid-adapted cells, and resistance against polymyxin B and colistin (polymyxin E) was observed. As polymyxins are important antibiotics, effective against multidrug-resistant gram-negative bacterial infections, the emergence of polymyxin resistance in acid-adapted E. coli is a serious public health concern. Conclusion The transcriptomic and phenotypic changes analysed in this study during the adaptation of E. coli to acid environments can provide useful information for developing intervention technologies and mitigating the risk associated with the emergence and spread of antimicrobial resistance.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 166 ◽  
Author(s):  
Carmen Sadaka ◽  
Peter Damborg ◽  
Jeffrey L. Watts

Antibiotic discovery is vital when considering the increasing antimicrobial resistance threat. The aim of this work was to provide a high-throughput screen (HTS) assay using multidrug-resistant Escherichia coli strains to enable further research into antimicrobial lead discovery and identify novel antimicrobials. This study describes a primary HTS of a diverse library of 7884 small molecules against a susceptible E. coli strain. A secondary screening of 112 molecules against four E. coli strains with different susceptibility profiles revealed NSC319726 as a potential antimicrobial lead serving as a novel template. NSC319726 is a good candidate for an analoguing program.


2021 ◽  
Author(s):  
Zongsen Zou ◽  
Robert Potter ◽  
William McCoy ◽  
George Katumba ◽  
Peter J. Mucha ◽  
...  

Urinary catheterization facilitates asymptomatic bacterial colonization of the urinary tract and increases the risk of urinary tract infection (UTI). Differentiating catheter-associated asymptomatic bacteriuria (CAASB) from catheter-associated UTI (CAUTI) can be challenging when the presence or origins of symptoms are unclear. To determine whether strain-specific Escherichia coli characteristics are associated with CAUTI, we compared genomic composition and experimental catheter biofilm production by urinary isolates from catheterized inpatients and rectal isolates from healthy volunteers. CAUTI isolates were associated with a distinctive phylotype B2 sub-clade dominated by the multidrug resistant, pandemic ST131 lineage. While catheter biofilm formation was widespread among E. coli isolates, phylotype B2 biofilms were more extensive and biofilm-associated genes were preferentially found in B2 and ST131 isolates. Distinctive suites of iron-responsive genes were associated with both the ST131 lineage and catheter biofilm formation. Catheter biofilms produced by some CAASB strains could inhibit ST131 colonization, suggesting a potential beneficial function for these strains. These results suggest that the combination of biofilm and non-biofilm-associated gene networks in urinary E. coli influence CAUTI risk in catheterized patients.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S315-S315
Author(s):  
Carolyn Chang ◽  
Felicia Ruffin ◽  
Vance G Fowler ◽  
Joshua T Thaden

Abstract Background The clinical impact of Escherichia coli biofilm formation is unknown. Methods Adults with E. coli bloodstream infections (BSI) were prospectively enrolled from 2002 to 2015. All E. coli isolates were genotyped using Multilocus sequence typing (MLST) and underwent crystal violet biofilm formation assay quantified by absorbance at 540 nm (OD540) in triplicate. Associations between biofilm formation and patient/bacterial characteristics were characterized by t-tests and ANOVA tests. Results Ninety-eight percent (186) of the 189 isolates formed detectable biofilms. Bacterial sequence type (ST) was associated with biofilm formation (P &lt; 0.001), as ST73 (average OD540 = 0.017) and ST393 (average OD540 = 0.016) had higher average biofilm formation while ST69 (average OD540 = 0.007) and ST405 (average OD540 = 0.002) had lower biofilm formation. E. coli isolates with non-multidrug-resistant (non-MDR) phenotype were associated with increased biofilm formation (MDR: average OD540 = 0.006; average non-MDR: OD540 = 0.01; P = 0.003). BSI isolates arising from pneumonia or urine/pyelonephritis were associated with the highest biofilm production (P = 0.04). No associations were identified between biofilm formation and route of infection, APACHE-II score, mortality, or complications of BSI. Conclusion In this prospective study of E. coli BSI isolates, biofilm formation was associated with ST, non-MDR phenotype, and BSI source. Disclosures All authors: No reported disclosures.


2010 ◽  
Vol 59 (4) ◽  
pp. 392-399 ◽  
Author(s):  
Viktoria Hancock ◽  
Malin Dahl ◽  
Per Klemm

Many bacterial infections are associated with biofilm formation. Bacterialbiofilms can develop on essentially all kinds of surfaces, producing chronicand often intractable infections. Escherichia coli is an importantpathogen causing a wide range of gastrointestinal infections. E. coli strain Nissle 1917 has been used for many decades as a probiotic againsta variety of intestinal disorders and is probably the best field-tested E. coli strain in the world. Here we have investigated the biofilm-formingcapacity of Nissle 1917. We found that the strain was a good biofilm former.Not only was it significantly better at biofilm formation than enteropathogenic,enterotoxigenic and enterohaemorrhagic E. coli strains, it was alsoable to outcompete such strains during biofilm formation. The results supportthe notion of bacterial prophylaxis employing Nissle 1917 and may partiallyexplain why the strain has a beneficial effect on many intestinal disorders.


Sign in / Sign up

Export Citation Format

Share Document