Induced pluripotent stem cells – alchemist's tale or clinical reality?

Author(s):  
S. Tamir Rashid ◽  
Ludovic Vallier

Following Shinya Yamanaka's first report describing the reprogramming of fibroblasts into stem cells over three years ago, some sceptics initially drew analogies between this new field of research and the quasi-mystical practice of ‘alchemy’. Unlike the alchemist, however, stem cell researchers have rigorously tested and repeated experiments, proving their very own brand of cellular ‘alchemy’ to be a reality, with potentially massive implications for the study of human biology and clinical medicine. These investigations have resulted in an explosion of related publications and initiated the field of stem cell research known as ‘induced pluripotency’. In this review, we give an account of the historical development, current technologies and potential clinical applications of induced pluripotency and conclude with a perspective on the possible future directions for this dynamic field.

2010 ◽  
Vol 428 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Adrian K. K. Teo ◽  
Ludovic Vallier

Stem cells represent a unique opportunity for regenerative medicine to cure a broad number of diseases for which current treatment only alleviates symptoms or retards further disease progression. However, the number of stem cells available has speedily increased these past 10 years and their diversity presents new challenges to clinicians and basic scientists who intend to use them in clinics or to study their unique properties. In addition, the recent possibility to derive pluripotent stem cells from somatic cells using epigenetic reprogramming has further increased the clinical interest of stem cells since induced pluripotent stem cells could render personalized cell-based therapy possible. The present review will attempt to summarize the advantages and challenges of each type of stem cell for current and future clinical applications using specific examples.


2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


2020 ◽  
Author(s):  
A Andrianto ◽  
Adityo Basworo ◽  
Ivana Purnama Dewi ◽  
Budi Susetio Pikir

IntroductionIt is possible to induce pluripotent stem cells from somatic cells, offering an infinite cell resource with the potential for disease research and use in regenerative medicine. Due to ease of accessibility, minimum invasive treatment, and can be kept frozen, peripheral blood mononuclear cells (PBMC) were an attractive source cell. VC6TFZ, a small molecule compound, has been successfully reprogrammed from mouse fibroblast induced pluripotent stem cells (iPSCs). However, it has not been confirmed in humans.ObjectiveThe aim of this research is to determine whether the small molecule compound VC6TFZ can induced pluripotency of PBMC to generate iPSCs detected with expression of SSEA4 and TRA1-60.MethodsUsing the centrifugation gradient density process, mononuclear cells were separated from peripheral venous blood. Mononuclear cells were cultured for 6 days in the expansion medium. The cells were divided into four groups; group 1 (P1), which was not exposed to small molecules (control group) and groups 2-4 (P2-P4), the experimental groups, subjected to various dosages of the small molecule compound VC6TFZ (VPA, CHIR, Tranylcypromine, FSK, Dznep, and TTNPB). The induction of pluripotency using small molecule compound VC6TFZ was completed within 14 days, then for 7 days the medium shifted to 2i medium. iPSCs identification in based on colony morphology and pluripotent gene expression, SSEA4 and TRA1-60 marker, using immunocytochemistry.ResultsColonies appeared on reprogramming process in day 7th. These colonies had round, large, and cobble stone morphology like ESC. Gene expression of SSEA4 and TRA 1-60 increased statisticaly significant than control group (SSEA4 were P2 p=0.007; P3 p=0.001; P4 p=0.009 and TRA 1-60 were P2 p=0.002; P3 p=0.001; P4 p=0.001).ConclusionSmall molecule compound VC6TFZ could induced pluripotency of human PBMC to generate iPSCs. Pluripotxency marker gene expression, SSEA 4 and TRA 1-60, in the experimental group was statistically significantly higher than in the control group.


2020 ◽  
Vol 5 (1) ◽  
pp. 1-4 ◽  
Author(s):  
David Septian Sumanto Marpaung ◽  
Ayu Oshin Yap Sinaga

The four transcription factors OCT4, SOX2, KLF4 and c-MYC are highly expressed in embryonic stem cells (ESC) and their overexpression can induce pluripotency, the ability to differentiate into all cell types of an organism. The ectopic expression such transcription factors could reprogram somatic stem cells become induced pluripotency stem cells (iPSC), an embryonic stem cells-like. Production of recombinant pluripotency factors gain interests due to high demand from generation of induced pluripotent stem cells in regenerative medical therapy recently. This review will focus on demonstrate the recent advances in recombinant pluripotency factor production using various host.


Author(s):  
Fariha Khaliq

Stem cell therapy is an approach to use cells that have the ability of self-renewal and to differentiate into different types of functional cells that are obtained from embryo and other postnatal sources to treat multiple disorders. These cells can be differentiated into different types of stem cells based on their specific characteristics to be totipotent, unipotent, multipotent or pluripotent. As potential therapy, pluripotent stem cells are considered to be the most interesting as they can be differentiated into different type of cells with similar characteristics as embryonic stem cells. Induced pluripotent stem cells (iPSCs) are adult cells that are reprogrammed genetically into stem cells from human fibroblasts through expressing genes and transcription factors at different time intervals. In this review, we will discuss the applications of stem cell therapy using iPSCs technology in treating neurodegenerative disorder such that Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS). We have also broadly highlighted the significance of pluripotent stem cells in stem cell therapy.


2020 ◽  
pp. 153537022096178
Author(s):  
Jian Feng

The 30 trillion cells that self-assemble into a human being originate from the pluripotent stem cells in the inner cell mass of a human blastocyst. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to approximate various aspects of this natural developmental process artificially by generating materials that can be used in invasive mechanistic studies of virtually all human conditions. In Parkinson’s disease, instructions computed by the basal ganglia to control voluntary motor functions break down, leading to widespread rhythmic bursting activities in the basal ganglia and beyond. It is thought that these oscillatory neuronal activities, which disrupt aperiodic neurotransmission in a normal brain, may reduce information content in the instructions for motor control. Using midbrain neuronal cultures differentiated from iPSCs of Parkinson’s disease patients with parkin mutations, we find that parkin mutations cause oscillatory neuronal activities when dopamine D1-class receptors are activated. This system makes it possible to study the molecular basis of rhythmic bursting activities in Parkinson’s disease. Further development of stem cell models of Parkinson’s disease will enable better approximation of the situation in the brain of Parkinson’s disease patients. In this review, I will discuss what has been found in the past about the pathophysiology of motor dysfunction in Parkinson’s disease, especially oscillatory neuronal activities and how stem cell technologies may transform our abilities to understand the pathophysiology of Parkinson’s disease. Impact statement Research on the pathophysiology of Parkinson’s disease (PD) has generated effective therapies such as deep brain stimulation. A better understanding of PD pathophysiology calls for patient-specific materials amenable for invasive mechanistic studies. In this minireview, I discuss our recent work on oscillatory neuronal activities in midbrain neurons differentiated from induced pluripotent stem cells (iPSCs) of PD patients with parkin mutations. These patient-specific neurons enable a variety of studies previously not feasible in the human system. Further development in stem cell technologies may generate more realistic models for us to decipher PD pathophysiology. These new developments will transform research and development in Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document