scholarly journals Organic cotton production may alleviate the environmental impacts of intensive conventional cotton production

Author(s):  
Kathleen Delate ◽  
Ben Heller ◽  
Jessica Shade

Abstract Conventional cotton production has been associated with the extensive use of agricultural chemicals, leading to environmental and health problems, decreased effectiveness of pesticides and higher costs of production. Organic bans the use of most pesticides while providing premiums for growers, and therefore may be a beneficial alternative for growers. Unfortunately, there has been a paucity of research examining the specific practices used by organic cotton growers and the environmental aspects of those practices. This study surveyed organic cotton producers and processors to document specific approaches and techniques used in organic cotton production and processing, the environmental impacts of those techniques and challenges facing organic cotton growers. We discuss the environmental impacts of organic management techniques and methods for conserving water and reducing dependence on irrigation. We also highlight the challenges to organic production identified in the survey, including management for weeds, insects and diseases, genetic contamination of organic crops from genetically modified cotton, organic seed availability, climate change, chemical drift and marketing of organic cotton. Finally, we suggest that investing in research to produce higher-yielding organic varieties, improved methods for organic weed management, and supporting carbon-sequestering practices will improve conversion to organic production.

2007 ◽  
Vol 22 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Sean L. Swezey ◽  
Polly Goldman ◽  
Janet Bryer ◽  
Diego Nieto

AbstractThree different cotton production strategies [certified organic, conventionally grown, and reduced insecticide input/integrated pest management (IPM)] were compared in field-sized replicates in the Northern San Joaquin Valley (NSJV), California, from 1996 to 2001. We measured arthropod abundance, plant development, plant density, pesticide use, cost of production, lint quality and yields in the three treatments. Overall pest abundance was low, and a key cotton fruit pest,Lygus hesperusKnight, known as the western tarnished plant bug (WTPB), did not exceed action thresholds in any treatment. Organic fields had significantly more generalist insect predators than conventional fields during at least one seasonal interval in all but one year. While there were no significant differences in plant development, plant densities at harvest were lower in organic than conventional and IPM fields. Some measures of lint quality (color grade and bale leaf rating) were also lower in the organic treatment than in either the IPM or the conventional treatments. Synthetic insecticides, not allowed for use in organic production, were also used in significantly lower quantities in the IPM fields than in the conventional fields. Over the 6-year period of the study, IPM fields averaged 0.63 kg of active ingredient (AI) insecticide per hectare, as opposed to 1.02 kg AI ha−1for conventional fields, a reduction of 38%. Costs of production per bale were on average 37% higher for organic than for conventional cotton. This cost differential was primarily due to greater hand-weeding costs and significantly lower yields in organic cotton, compared with either IPM or conventional cotton. Average 6-year yields were 4.4, 5.4 and 6.7 bales ha−1for organic, IPM and conventional treatments, respectively. Low world cotton prices and the lack of premium prices for organic cotton are the primary obstacles for continued production in the NSJV.


Weed Science ◽  
2014 ◽  
Vol 62 (3) ◽  
pp. 520-531 ◽  
Author(s):  
James J. DeDecker ◽  
John B. Masiunas ◽  
Adam S. Davis ◽  
Courtney G. Flint

Organic agricultural systems increase the complexity of weed management, leading organic farmers to cite weeds as one of the greatest barriers to organic production. Integrated Weed Management (IWM) systems have been developed to address the ecological implications of weeds and weed management in cropping systems, but adoption is minimal. Organic agriculture offers a favorable context for application of IWM, as both approaches are motivated by concern for environmental quality and agricultural sustainability. However, adoption of IWM on organic farms is poorly understood due to limited data on weed management practices used, absence of an IWM adoption metric, and insufficient consideration given to the unique farming contexts within which weed management decisions are made. Therefore, this study aimed to (1) characterize organic weed management systems; (2) identify motivations for, and barriers to, selection of weed management practices; and (3) generate guiding principles for effective targeting of weed management outreach. We surveyed Midwestern organic growers to determine how specified psychosocial, demographic, and farm structure factors influence selection of weed management practices. Cluster analysis of the data detected three disparate, yet scaled, approaches to organic weed management. Clusters were distinguished by perspective regarding weeds and the number of weed management practices used. Categorization of individual farms within the identified approaches was influenced by primary farm products as well as farmer education, years farming, and information-seeking behavior. The proposed conceptual model allows weed management educators to target outreach for enhanced compatibility of farming contexts and weed management technologies.


2020 ◽  
Vol 14 (4) ◽  
pp. 1416-1431
Author(s):  
Barnabé Agalati ◽  
Pamphile Degla

Face au défi de la dégradation de l’environnement et des problèmes sanitaires liés à la production du coton conventionnel au Bénin, la production du coton biologique initiée depuis quelques décennies peine à se développer. Cet article s’intéresse à l’analyse de l’effet des coûts de transaction (CT) sur la performance économique et l’adoption du coton biologique au Centre et au Nord du Bénin. Basée sur un échantillon aléatoire de 408 producteurs dont 168 adoptants du coton biologique, l’étude a utilisé l’approche d’estimation des CT, la régression logistique et le test t de Student pour l’analyse des données. Les résultats montrent que les CT, plus élevés dans le système du coton biologique réduisent considérablement la performance économique de ce système et affectent négativement la probabilité de son adoption. Outre cet effet, il ressort également l’influence négative d’autres facteurs tels que le sexe, le niveau de rendement, la distance domicile-exploitation, le nombre d’années d’expérience dans la production cotonnière et le mode de faire valoir direct sur l’adoption du coton biologique. La formation technique dans la production du coton biologique et la situation géographique exercent par contre une influence positive sur l’adoption du coton biologique.Mots clés : Déterminants, système de production, économie néo-institutionnelle, agriculture biologique English Title: Effect of transaction costs on the economic performance and the adoption of organic cotton in central and northern Benin Regarding the environmental degradation challenge and health problems due to the production of conventional cotton in Benin, organic cotton production initiated several decades ago is struggling to develop. This paper focuses on analyzing the effect of transaction costs on the economic performance and the adoption of organic cotton in central and northern Benin. The study is based on a random sample of 408 producers, including 168 adopters of organic cotton. The transaction costs estimation approach, the logistic regression and the Student's t-test were used for data analysis. The results show that the high transaction costs in the organic cotton system significantly reduce the economic performance of this system and negatively affect the probability of adoption of organic cotton. In addition, there is the negative influence of other factors such as gender, the level of yield, the distance from home to farm, the years of experience in cotton production as well as the direct tenure mode in the adoption of organic cotton. On the other side, technical training in the production of organic cotton and the geographic location have a positive influence on the adoption of organic cotton.Keywords: Determinants, production system, new institutional economics, organic production.


2021 ◽  
pp. 1-13
Author(s):  
Toru Uno ◽  
Ryosuke Tajima ◽  
Kazumi Suzuki ◽  
Mizuhiko Nishida ◽  
Toyoaki Ito ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jong Yeong Pyon ◽  
Jeung Joo Lee ◽  
Kee Woong Park

2012 ◽  
Vol 39 (No. 2) ◽  
pp. 81-88 ◽  
Author(s):  
A. Karkanis ◽  
D. Bilalis ◽  
A. Efthimiadou ◽  
N. Katsenios

Leek is a weak competitor against weeds. A field experiment was conducted to determine the effects of herbicides and mulching on weed flora, growth and yield of a leek crop. A randomized complete block design was employed with five replicates per treatment (control, mulching with barley straw, post-transplant application of the herbicide oxyfluorfen at 360 g a.i./ha and pre-transplant application of pendimethalin at 1,650 g a.i./ha). The order of weed sensitivity to mulches was black nightshade (72–85%), venice mallow (80%) > redroot pigweed (70–74%), barnyardgrass (67–77%) > jimsonweed (65%) > common purslane (42–45%). Oxyfluorfen had the highest control of jimsonweed, venice mallow and common purslane. There were no significant effects of the pendimethalin treatment on weed control ratings of jimsonweed, venice mallow and field bindweed. Injury symptoms (small white spots) appeared on leek leaves exposed to oxyfluorfen. The highest yield of leek was recorded with the oxyfluorfen application. Our results indicate that mulching and oxyfluorfen application provides satisfactory control of weeds. The use of mulching is an option for the weed management in organic leek crop.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 257 ◽  
Author(s):  
Husrev Mennan ◽  
Khawar Jabran ◽  
Bernard H. Zandstra ◽  
Firat Pala

Vegetables are a substantial part of our lives and possess great commercial and nutritional value. Weeds not only decrease vegetable yield but also reduce their quality. Non-chemical weed control is important both for the organic production of vegetables and achieving ecologically sustainable weed management. Estimates have shown that the yield of vegetables may be decreased by 45%–95% in the case of weed–vegetable competition. Non-chemical weed control in vegetables is desired for several reasons. For example, there are greater chances of contamination of vegetables by herbicide residue compared to cereals or pulse crops. Non-chemical weed control in vegetables is also needed due to environmental pollution, the evolution of herbicide resistance in weeds and a strong desire for organic vegetable cultivation. Although there are several ways to control weeds without the use of herbicides, cover crops are an attractive choice because these have a number of additional benefits (such as soil and water conservation) along with the provision of satisfactory and sustainable weed control. Several cover crops are available that may provide excellent weed control in vegetable production systems. Cover crops such as rye, vetch, or Brassicaceae plants can suppress weeds in rotations, including vegetables crops such as tomato, cabbage, or pumpkin. Growers should also consider the negative effects of using cover crops for weed control, such as the negative allelopathic effects of some cover crop residues on the main vegetable crop.


Horticulturae ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 59 ◽  
Author(s):  
Tubeileh ◽  
Schnorf ◽  
Mondragon ◽  
Gray

Weed management represents one of the most serious and costly challenges in organic crop production systems. Agricultural waste/byproducts might present phytotoxicity that can be exploited to control weeds. Two experiments were designed to study the effects of four concentrations of olive vegetation water (OVW) and a control water treatment (with no OVW) on cheeseweed (Malva parviflora L.) seed germination in petri dishes and pots. In a third experiment, two rates of four composts (crop residue mix (CR), olive pomace (OP), dairy/horse manure (DM), and an OP/DM mix) were mixed into a clay‒loam soil at 0.10 or 0.20 L L−1, to assess their effects on weed number and biomass, in addition to bell pepper (Capsicum annuum L.) growth. In the petri dish experiment, the three highest OVW concentrations completely prohibited germination during the five-week duration of the study. For the pot experiment, 25 mL application of OVW significantly delayed and reduced cheeseweed germination, with the reduction being proportional to the concentration of OVW. In the third experiment, composts reduced weed dry matter (composed mostly of purslane (Portulaca oleracea L.)), with the CR compost being the most effective, reducing total weed biomass by 67% compared to the control. CR10 and DM10 tended to increase bell pepper yields, although none of the plant parameters was significantly affected by the compost treatments.


2006 ◽  
Vol 20 (3) ◽  
pp. 646-650 ◽  
Author(s):  
Nathan S. Boyd ◽  
Eric B. Brennan

Weed management is often difficult and expensive in organic production systems. Clove oil is an essential oil that functions as a contact herbicide and may provide an additional weed management tool for use on organic farms. Burning nettle, purslane, and rye responses to 5, 10, 20, 40, and 80% v/v clove oil mixture applied in spray volumes of 281 and 468 L/ha were examined. Log-logistic curves were fitted to the nettle and purslane data to determine the herbicide dose required to reduce plant dry weight 50% (GR50) and 90% (GR90). A three-parameter Gaussian curve was fitted to the rye data. The GR50 and GR90 were largely unaffected by spray volume. Nettle dry weight was reduced by 90% with 12 to 61 L clove oil/ha, whereas 21 to 38 L clove oil/ha were required to reduce purslane biomass to the same level. Rye was not effectively controlled by clove oil. Clove oil controls broadleaf weeds at high concentrations, but its cost makes broadcast applications prohibitive, even in high-value vegetable production systems.


Sign in / Sign up

Export Citation Format

Share Document