Burning Nettle, Common Purslane, and Rye Response to a Clove Oil Herbicide

2006 ◽  
Vol 20 (3) ◽  
pp. 646-650 ◽  
Author(s):  
Nathan S. Boyd ◽  
Eric B. Brennan

Weed management is often difficult and expensive in organic production systems. Clove oil is an essential oil that functions as a contact herbicide and may provide an additional weed management tool for use on organic farms. Burning nettle, purslane, and rye responses to 5, 10, 20, 40, and 80% v/v clove oil mixture applied in spray volumes of 281 and 468 L/ha were examined. Log-logistic curves were fitted to the nettle and purslane data to determine the herbicide dose required to reduce plant dry weight 50% (GR50) and 90% (GR90). A three-parameter Gaussian curve was fitted to the rye data. The GR50 and GR90 were largely unaffected by spray volume. Nettle dry weight was reduced by 90% with 12 to 61 L clove oil/ha, whereas 21 to 38 L clove oil/ha were required to reduce purslane biomass to the same level. Rye was not effectively controlled by clove oil. Clove oil controls broadleaf weeds at high concentrations, but its cost makes broadcast applications prohibitive, even in high-value vegetable production systems.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 257 ◽  
Author(s):  
Husrev Mennan ◽  
Khawar Jabran ◽  
Bernard H. Zandstra ◽  
Firat Pala

Vegetables are a substantial part of our lives and possess great commercial and nutritional value. Weeds not only decrease vegetable yield but also reduce their quality. Non-chemical weed control is important both for the organic production of vegetables and achieving ecologically sustainable weed management. Estimates have shown that the yield of vegetables may be decreased by 45%–95% in the case of weed–vegetable competition. Non-chemical weed control in vegetables is desired for several reasons. For example, there are greater chances of contamination of vegetables by herbicide residue compared to cereals or pulse crops. Non-chemical weed control in vegetables is also needed due to environmental pollution, the evolution of herbicide resistance in weeds and a strong desire for organic vegetable cultivation. Although there are several ways to control weeds without the use of herbicides, cover crops are an attractive choice because these have a number of additional benefits (such as soil and water conservation) along with the provision of satisfactory and sustainable weed control. Several cover crops are available that may provide excellent weed control in vegetable production systems. Cover crops such as rye, vetch, or Brassicaceae plants can suppress weeds in rotations, including vegetables crops such as tomato, cabbage, or pumpkin. Growers should also consider the negative effects of using cover crops for weed control, such as the negative allelopathic effects of some cover crop residues on the main vegetable crop.


2006 ◽  
Vol 20 (4) ◽  
pp. 1052-1057 ◽  
Author(s):  
Nathan S. Boyd ◽  
Eric B. Brennan ◽  
Steve A. Fennimore

Weed control in organic vegetable production systems is challenging and accounts for a large portion of production costs. Six methods to prepare a stale seedbed were compared on certified and transitional organic land in Salinas, CA, in 2004. Weed control operations occurred on raised beds 2 to 3 d before planting baby spinach or a simulated vegetable planting. A flamer and an herbicide application of 10% v/v of a clove oil mixture (45% v/v clove oil) at 280 L/ha (iteration 1) or 15% v/v of a clove oil mixture (45% clove oil) at 467 L/ha (iterations 2 and 3) were used to control weeds without disturbing the soil. Top knives on a sled, a rolling cultivator, and a rotary hoe were used to control weeds while tilling the bed top. A bed shaper–rototiller combination was also used, which tilled the entire bed. Broadleaf weed control was 36% with clove oil, 63% with the rotary hoe, and significantly higher (87 to 100% control) with the remaining treatments in iteration 1. Broadleaf weed control was consistently lower (72 to 86% control) with the flamer than all other treatments (95 to 100% control) in iterations 2 and 3. The difference between sites can probably be attributed to differences in weed size. The flamer and the clove oil herbicide had the lowest number of weeds emerging with the crop following stale seedbed formation. The most expensive technique was clove oil at $1,372/ha. The estimated cost of forming the stale seedbed with the remaining weed management tools ranged from $10 to $43/ha.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 99 ◽  
Author(s):  
Gulshan Mahajan ◽  
Lee Hickey ◽  
Bhagirath Singh Chauhan

Weed-competitive genotypes could be an important tool in integrated weed management (IWM) practices. However, weed competitiveness is often not considered a priority for breeding high-yielding cultivars. Weed-competitive ability is often evaluated based on weed-suppressive ability (WSA) and weed-tolerance ability (WTA) parameters; however, there is little information on these aspects for barley genotypes in Australia. In this study, the effects of weed interference on eight barley genotypes were assessed. Two years of field experiments were performed in a split-plot design with three replications. Yield loss due to weed interference ranged from 43% to 78%. The weed yield amongst genotypes varied from 0.5 to 1.7 Mg ha−1. Relative yield loss due to weed interference was negatively correlated with WTA and WSA. A negative correlation was also found between WSA and weed seed production (r = −0.72). Similarly, a negative correlation was found between WTA and barley yield in the weedy environment (r = −0.91). The results suggest that a high tillering ability and plant height are desirable attributes for weed competitiveness in the barley genotypes. These results also demonstrated that among the eight barley genotypes, Commander exhibited superior WSA and WTA parameters and therefore, could be used in both low- and high-production systems for weed management. Westminster had a superior WSA parameter. Therefore, it could be used for weed management in organic production systems. These results also implied that genotypic ranking on the basis of WSA and WTA could be used as an important tool in strengthening IWM programs for barley.


1999 ◽  
Vol 9 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Ronald D. Morse

Advantages of no-till (NT) production systems are acknowledged throughout the world. During the 1990s, production of NT vegetable crops has increased for both direct seeded and transplanted crops. Increased interest in reduced-tillage systems among research workers and vegetable growers is attributed to: 1) development and commercialization of NT transplanters and seeders, 2) advancements in the technology and practice of producing and managing high-residue cover crop mulches, and 3) improvements and acceptance of integrated weed management techniques. Results from research experiments and grower's fields over the years has shown that success with NT transplanted crops is highly dependent on achieving key production objectives, including: 1) production of dense, uniformly distributed cover crops; 2) skillful management of cover crops before transplanting, leaving a heavy, uniformly distributed killed mulch cover over the soil surface; 3) establishment of transplants into cover crops with minimum disturbance of surface residues and surface soil; and 4) adoption of year-round weed control strategies.


2007 ◽  
Vol 87 (5) ◽  
pp. 1037-1044 ◽  
Author(s):  
R. J. MacRae ◽  
B. Frick ◽  
R. C. Martin

Given relatively low adoption levels to date, the potential benefits of organic farming systems are not yet very visible. However, there is growing evidence in the literature that adoption of such systems produces multiple environmental, social, and financial benefits that can solve pressing agricultural problems in Canada. Compared with their duration as conventional operations, most organic farms in North America perform better under organic management. This outcome is usually a product of lower input costs, more diversified production and marketing channels, resilience in the face of variable market conditions, higher premiums, and a better capacity to adapt to weather extremes. However, the performance of farming systems including some horticultural and animal production systems, for which our ecological understanding is limited, is still frequently inferior. The data on social impacts are less conclusive, but there is some evidence that when a community has many sustainable (including organic) producers , there are positive shifts in community economic development and social interaction. The reasons appear to be related to the need to hire more labour, the increased demand for local goods and services, and a greater commitment to participation in civic in stitutions. Key words: Organic agriculture, economic performance, social benefits


Author(s):  
Matthew A Carr ◽  
Kate A Congreves

The demand for certified organic garlic (Allium sativum) in Canada is increasing; however, garlic can be challenging to produce organically, as it does not compete well with weeds, requires relatively fertile soils, and is grown in a biennial cropping system. Synthetic mulches have been adopted in organic production as they can be an economical method to improve vegetable production by reducing weed pressure and modifying soil conditions. We hypothesize that garlic quality and overall yield will be improved when using synthetic mulches. In 2017-18, we conducted a randomized complete block design experiment to compare garlic production of black plastic, white plastic, and Kraft paper mulch treatments to a control with no mulch at a certified organic farm in Krestova, British Columbia. We evaluated garlic characteristics associated with yield and quality, changes in soil nutrition, and weed control of the mulch treatments. We found that plastic mulches had the best weed control, and all synthetic mulches increased minimum and maximum bulb diameter, clove count, and yield compared to the control. Mulching materials did not influence soil nitrate concentrations. The results support the hypothesis that synthetic mulches increase the quality and yield of the garlic compared to the control. Our findings suggest that synthetic mulching may be a key component of improving garlic production systems.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 877d-877
Author(s):  
C.R. Rom ◽  
H. Friedrich ◽  
K. Harper

Higher education curricula should be alert to trends in production and science, and responsive to needs of producers and consumers in our society. A recent trend has emerged nationally and internationally for the production and consumption of certified organic produce which is increasing at a significant rate. Following the creation of the National Organic Program and formal federal regulations for certification which govern production, it has been questioned whether horticulture programs in land grant institutions have adjusted curricula appropriately to train producers, consultants, extension specialists, teachers and research scientists to be engaged in organic production systems. According to USDA statistics, several states in the southern region have significantly fewer certified organic farms and certifying agencies than the northeast, Midwest or western regions. A review horticulture and crops programs at 36 land grant universities (1862 and 1890) in 14 southern region states indicated although several institutions had research and outreach programs for sustainable and organic production, there were only three classes on organic gardening, two classes on organic crops production, and one field-based organic production course that could be identified in existing curricula. It appears that with the growth of the organic industry worldwide that students in programs in the southern region may be under-served in this educational area. Further, it may be questioned whether the lack of production and certifying agencies in the southern region is associated with the lack of science-based education provided by the land grant universities. A recent survey of faculty indicated a perceived need for stand-alone coursework on organic, sustainable, and ecologically-based production systems.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 170a-170
Author(s):  
Victor A. Wegrzyn

Sustainable production systems are characterized as systems that can be physically and biologically maintained in perpetuity, can avoid adverse environmental and health problems, and can be economically profitable. Organic vegetable production systems are one example of sustainable farming enterprises. In California, organic production and postharvest handling techniques are closely defined by legislation. Of the several grower groups representing organic farmers in the state, the California Certified Organic Farmers is the largest, representing 382 growers that farmed a total area of 10,375 ha in 1988. Of these, 200 growers are vegetable producers. Another organization active among organic growers in California, as well as Mexico, Central American countries, and the Caribbean, is the Organic Crop Improvement Association. Marketing organizations such as the Nutri-Clean Program, which tests produce for pesticide residues and certifies specific residue standards, and the Organic Market News and Information Service facilitate the sale of organic produce in California. Cultural practice information for organic vegetable production is difficult to find, particularly techniques that would allow a grower to switch from conventional to organic production. University researchers and extension workers have so far been of little help, although the Univ. of California Sustainability Program at Davis is beginning research and education activities. Funding for these activities is inadequate, and the program is understaffed. There is need for long-term, interdisciplinary, on-farm studies to study organic production techniques in a realistic setting. At present, the reward system in place in land-grant institutions offers little encouragement to researchers to engage in this kind of work. There are formidable obstacles to increasing the use of organic materials for crop fertilization. The nutrient content of the state's manure and organic waste supplies is probably insufficient to meet the fertility needs of California's crops. In addition, since the majority of land currently producing vegetable crops in California is leased, long-term soil fertility investments are a risky undertaking.


Biotecnia ◽  
2016 ◽  
Vol 18 (3) ◽  
pp. 33-36
Author(s):  
Ricardo Augusto Luna Murillo ◽  
Juan José Reyes Pérez ◽  
Kleber Augusto Espinosa Cunuhay ◽  
Marcelo Vicente Luna Murillo ◽  
Fiamma Valeria Luna Quintana ◽  
...  

Entre los sistemas de producción orgánica bajo condiciones controladas, la producción de hortalizas con aplicación de enmiendas es una práctica que se ha extendido a escala mundial. El objetivo del presente estudio fue evaluar los efectos de los abonos orgánicos sobre algunas variables de producción en plantas de tomate. Las evaluaciones se realizaron a los 65 días después del trasplante, utilizándose abonos orgánicos edáficos y foliares y un tratamiento control. Los tratamientos fueron aplicados una vez sembradas las plantas a los 30 días, siguiendo un diseño experimental de bloques al azar. Sobre la base de los resultados obtenidos se comprobó que a los 65 días después de la siembra, los abonos humus de lombriz más ácido húmico tienen una influencia positiva sobre el número y peso total de frutos; el tratamiento bocaschi más ácido húmico fue superior al diámetro del fruto. ABSTRACTAmong the organic production systems under controlled conditions, vegetable production with application of amendments is a practice that has spread worldwide. The aim of this study was to evaluate the effects of organic fertilizers on some production variables tomato plants. Evaluations were performed at 65 days after transplantation, using different soil and foliar organic fertilizers and a control treatment. The treatments were applied once planted plants at 30 days, following an experimental randomized block design. Based on the results obtained it was found that at 65 days after sowing, the humus fertilizer more acids plus humic have a positive influence on the total number of fruits, and the total weight of fruits, and treatment bocaschi plus humic acid was higher in the diameter of the fruit.


2020 ◽  
Vol 113 (5) ◽  
pp. 2553-2557
Author(s):  
Tej P Acharya ◽  
Gregory E Welbaum ◽  
Ramón A Arancibia

Abstract Low tunnels covered with spun-bonded fabric (row covers) provide season extension for vegetable production and also afford a physical barrier against airborne insects and other non-soil pests. Brussels sprouts, Brassica oleracea L. group Gemmifera (Brassicaceae), is a popular vegetable in local markets in Virginia; however, unprotected field production is severely affected by insect pest infestation. This study’s objective was to determine the level of protection low tunnels provide against insect infestation and leaf herbivory injury. The experiment was conducted at the Virginia Tech Eastern Shore Agricultural Research and Extension Center in Painter, Virginia. The experimental design was split-plot with polyethylene soil mulches (white or black) as whole plot factors and production systems (low tunnel or open field) as subplot factors. In this study, low tunnels reduced insect infestation and chewing herbivory leaf injury to Brussels sprouts. Compared to an unprotected open field, infestations of lepidopteran insects and harlequin bug, Murgantia histrionica (Hahn) (Hemiptera: Pentatomidae) were reduced on plants under low tunnels. However, aphids (Hemiptera: Aphidae) infestation occurred under low tunnels in fall. There was no effect of color mulches (white or black) and no interaction between tunnel and mulch color on insect infestation and chewing injury. Fewer insect infestations and feeding injury indicate that low tunnels can be an effective management tool for sustainable vegetable production.


Sign in / Sign up

Export Citation Format

Share Document