scholarly journals MHD simulations of star-disk magnetospheres and the formation of outflows and jets

2007 ◽  
Vol 3 (S243) ◽  
pp. 265-276
Author(s):  
Christian Fendt

AbstractIn this review the recent development concerning the large-scale evolution of stellar magnetospheres in interaction with the accretion disk is discussed. I put emphasis on the generation of outflows and jets from the disk and/or the star. In fact, tremendous progress has occurred over the last decade in the numerical simulation of the star-disk interaction. The role of numerical simulations is essential in this area because the processes involved are complex, strongly interrelated, and often highly time-dependent. Recent MHD simulations suggest that outflows launched from a very concentrated region tend to be un-collimated. I present preliminary results of simulations of large-scale star-disk magnetospheres loaded with matter from the stellar, resp. the disk surface demonstrating how a disk jet collimates the wind from the star and also how the stellar wind lowers the collimation degree of the disk outflow.

2017 ◽  
Author(s):  
Jessie A.G. van Buggenum ◽  
Jan P. Gerlach ◽  
Sabine E.J. Tanis ◽  
Mark Hogeweg ◽  
Jesse Middelwijk ◽  
...  

AbstractCell-based small molecule screening is an effective strategy leading to new medicines. Scientists in the pharmaceutical industry as well as in academia have made tremendous progress in developing both large-scale and smaller-scale screening assays. However, an accessible and universal technology for measuring large numbers of molecular and cellular phenotypes in many samples in parallel is not available. Here, we present the Immuno-Detection by sequencing (ID-seq) technology that combines antibody-based protein detection and DNA-sequencing via DNA-tagged antibodies. We used ID-seq to simultaneously measure 84 (phospho-)proteins in hundreds of samples and screen the effects of ~300 kinase inhibitor probes on primary human epidermal stem cells to characterise the role of 225 kinases. Our work highlighted a previously unrecognized downregulation of mTOR signaling during differentiation and uncovered 13 kinases regulating epidermal renewal through distinct mechanisms.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Yusuke Ebihara ◽  
Takashi Tanaka

AbstractAn auroral substorm is a visual manifestation of large-scale, transient disturbances taking place in space surrounding the Earth, and is one of the central issues in the space plasma physics. While a number of studies have been conducted, a unified picture of the overall evolution of the auroral substorm has not been drawn. This paper is aimed to overview the recently obtained results of global magnetohydrodynamics (MHD) simulations in a context of a priori presence of anomalous resistivity leading to magnetic reconnection, and to illuminate what the global MHD simulation can sufficiently reproduce the auroral transients during the auroral substorm. Some auroral transients are found to be seamlessly reproduced by the MHD simulation, including complicated auroral structures moving equatorward during the growth phase, auroral brightening starting to appear near the equatorward border of the preexisting auroral arc, and an auroral surge traveling westward. Possible energy transfer and conversion from the solar wind to the Earth are also overviewed on the basis of the MHD simulation. At least, 4 dynamo regions appear sequentially in the course of the development of the auroral substorm. Although the MHD simulation reproduces some transients, further studies are needed to investigate the role of kinetic processes.


Author(s):  
Carlos Bettencourt da Silva ◽  
Ricardo José Nunes dos Reis

The role of coherent vortices near the turbulent/non-turbulent (T/NT) interface in a turbulent plane jet is analysed by a direct numerical simulation (DNS). The coherent vortices near the jet edge consist of large-scale vortical structures (LSVSs) maintained by the mean shear and intense vorticity structures (IVSs) created by the background fluctuating turbulence field. The radius of the LSVS is equal to the Taylor micro-scale R lsvs ≈ λ , while the radius of the IVS is of the order of the Kolmogorov micro-scale R ivs ∼ η . The LSVSs are responsible for the observed vorticity jump at the T/NT interface, being of the order of the Taylor micro-scale. The coherent vortices in the proximity of the T/NT interface are preferentially aligned with the tangent to the T/NT interface and are responsible for the viscous dissipation of kinetic energy near the T/NT interface and to the characteristic shape of the enstrophy viscous diffusion observed at that location.


2013 ◽  
Vol 9 (S302) ◽  
pp. 320-329
Author(s):  
S. P. Owocki ◽  
A. ud-Doula ◽  
R. H. D. Townsend ◽  
V. Petit ◽  
J. O. Sundqvist ◽  
...  

AbstractA subpopulation (~10%) of hot, luminous, massive stars have been revealed through spectropolarimetry to harbor strong (hundreds to tens of thousand Gauss), steady, large-scale (often significantly dipolar) magnetic fields. This review focuses on the role of such fields in channeling and trapping the radiatively driven wind of massive stars, including both in the strongly perturbed outflow from open field regions, and the wind-fed “magnetospheres” that develop from closed magnetic loops. For B-type stars with weak winds and moderately fast rotation, one finds “centrifugal magnetospheres”, in which rotational support allows magnetically trapped wind to accumulate to a large density, with quite distinctive observational signatures, e.g. in Balmer line emission. In contrast, more luminous O-type stars have generally been spun down by magnetic braking from angular momentum loss in their much stronger winds. The lack of centrifugal support means their closed loops form a “dynamical magnetosphere”, with trapped material falling back to the star on a dynamical timescale; nonetheless, the much stronger wind feeding leads to a circumstellar density that is still high enough to give substantial Balmer emission. Overall, this review describes MHD simulations and semi-analytic dynamical methods for modeling the magnetospheres, the magnetically channeled wind outflows, and the associated spin-down of these magnetic massive stars.


2015 ◽  
Vol 11 (S319) ◽  
pp. 143-143
Author(s):  
Mariana Ramos-Martínez ◽  
Gilberto C. Gómez

AbstractThe removal of ISM of disk galaxies through ram pressure stripping (RPS) has been extensively studied in numerous simulations (see Roediger 2009 and references therein). The models show that RPS has a significant impact on galaxy evolution (truncation of the ISM will lead to a decrease in star formation and a change in galaxy color). Nevertheless, the role of magnetic fields (MFs) on the dynamics of the gas in this process has not been sufficiently studied, although the influence of the MFs on the large scale structure is well established. This motivated us to perform a 3D MHD simulation of a disk galaxy with an isothermal, non-self gravitating and magnetized gaseous disk in equilibrium with a galaxy potential (Allen & Santillán, 1991). We model RPS on the galactic disk under the wind-tunnel approximation with the use of the RAMSES code (Teyssier, 2002) in order to understand the effects of MFs in RPS.


2013 ◽  
Vol 31 (10) ◽  
pp. 1853-1866 ◽  
Author(s):  
F. R. Cardoso ◽  
W. D. Gonzalez ◽  
D. G. Sibeck ◽  
M. Kuznetsova ◽  
D. Koga

Abstract. Magnetic reconnection can be a continuous or a transient process. Global magnetohydrodynamics (MHD) simulations are important tools to understand the relevant magnetic reconnection mechanisms and the resulting magnetic structures. We have studied magnetopause reconnection using a global 3-D MHD simulation in which the interplanetary magnetic field (IMF) has been set to large positive By and large negative Bz components, i.e., a south-duskward direction. Flux tubes have been observed even during these constant solar wind conditions. We have focused on the interlinked flux tubes event resulting from time-dependent, patchy and multiple reconnection. At the event onset, two reconnection modes seem to occur simultaneously: a time-dependent, patchy and multiple reconnection for the subsolar region; and, a steady and large-scale reconnection for the regions far from the subsolar site.


2019 ◽  
Vol 76 (7) ◽  
pp. 1845-1863 ◽  
Author(s):  
Yi Dai ◽  
Sharanya J. Majumdar ◽  
David S. Nolan

Abstract This study investigates the role of the asymmetric interaction between the tropical cyclone (TC) and the environmental flow in governing the TC inner-core asymmetric structure. Motivated by the limitations of bulk measures of vertical wind shear in representing the complete environmental flow, the TC outflow is used as a focus for the asymmetric interaction. By analyzing an idealized numerical simulation, it is demonstrated that parcels can go directly from the asymmetric rainband to the upper-level outflow. The relatively large vertical mass flux in the rainband region also suggests that the asymmetric rainband is an important source of the outflow. In a simulation that suppresses convection by reducing the water vapor within the rainband region, the upper-level outflow is weakened, further supporting the hypothesis that the rainband and outflow are directly connected. Finally, it is demonstrated that the asymmetric outflow and the outer rainband are coupled through the descending inflow below the outflow. Some of the main characteristics of the outflow–rainband relationship are also supported by a real-case numerical simulation of Hurricane Bill (2009). The relationship is potentially useful for understanding and predicting the evolution of the TC inner-core structure during the interaction with the large-scale environmental flow.


1997 ◽  
Vol 163 ◽  
pp. 490-493 ◽  
Author(s):  
M.M. Romanova ◽  
R.V.E. Lovelace ◽  
G.V. Ustyugova ◽  
A.V. Koldoba ◽  
V.M. Chechetkin

AbstractA family of stationary solutions for magnetically driven outflows has been discovered by time-dependent, axisymmetric magnetohydrodynamic simulations of outflows from an accretion disk threaded by an inclined magnetic field. At the disk surface matter was given a small initial push with a speed less than the slow magnetosonic speed. In the simulations, the outflowing matter is observed to be accelerated by magnetic force and by centrifugal force up to velocities in excess of the fast magnetosonic speed and in excess of the escape speed from the central object.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2013 ◽  
Author(s):  
Elisabeth J. Ploran ◽  
Ericka Rovira ◽  
James C. Thompson ◽  
Raja Parasuraman

Sign in / Sign up

Export Citation Format

Share Document