scholarly journals The growth of astrophysical understanding

2009 ◽  
Vol 5 (S260) ◽  
pp. 22-32
Author(s):  
Martin Harwit

Since this symposium commemorated Galileo's discoveries and was concerned with astronomy and culture, I thought I might examine the extent to which culture affects how we view, depict, and ultimately come to understand the Universe around us. Twenty-five years ago, Andrew Pickering, wrote Constructing Quarks – A Sociological History of Particle Physics, (Pickering 1984) a book that enormously annoyed the high-energy physics community, perhaps because it contained a disquieting dose of truth. Pickering argued that the theory of fundamental particles, the particles that make up the atomic nucleus, and break up or fuse into myriad other particles when smashed into each other, was a construct that physicist had pieced together, through a process he termed a “communally congenial representation of reality”. Physicists, he claimed, had arrived at a so-called “standard theory” of particle physics that was not an inherent description of Nature, but “deeply rooted in common-sense intuitions about the world and our knowledge of it”. Instead, Pickering surmised that a better depiction of particle physics would eventually be found, which would appear unrecognizably different from what had come to be the accepted way of viewing Nature's fundamental particles. Today, many particle physicists would be more likely to agree with Pickering than they were then. Although the standard theory has successfully survived a quarter of a century of testing, its scope is known to be limited. It fails to properly accommodate gravity. And the string theories, brane theories, and other attempts of particle physicists to produce a coherent theory of all the known forces of nature have so different a structure from the standard theory, topologically, as well as in terms of numbers of spatial dimensions, that they share little recognizable resemblance. So, we may ask, was Pickering right? Are physicists and astronomers just constructing congenial representations that bear little relation to the inherent structure of the Universe we inhabit? In astronomy, we have by now embraced what we term the “concordance model” based on general relativity, which we assert has led to tremendous strides in understanding the evolution of the Universe. But we find ourselves forced to postulate a new form of matter, dark matter, the existence of which is supported by little independent evidence, and we find ourselves forced to postulate the existence of a new form of energy, dark energy, for which there is similarly little independent evidence. Perhaps both these postulates will someday soon be justified. But we may equally well find a need for viewing the Universe in a totally different way that encompasses general relativity only as a limiting case, but embraces dark matter and dark energy as a natural consequence. Such a depiction might then be just as mind-bogglingly different from what we conceive today, as Einstein's postulate was, when he first annunciated it, that the speed of light would always appear the same no matter how fast an observer was moving toward or away from its source. How could that be, it violated every conceivable human intuition?

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Alexandre Deur

Abstract Analyses of internal galaxy and cluster dynamics typically employ Newton’s law of gravity, which neglects the field self-interaction effects of General Relativity. This may be why dark matter seems necessary. The universe evolution, on the other hand, is treated with the full theory, General Relativity. However, the approximations of isotropy and homogeneity, normally used to derive and solve the universe evolution equations, effectively suppress General Relativity’s field self-interaction effects and this may introduce the need for dark energy. Calculations have shown that field self-interaction increases the binding of matter inside massive systems, which may account for galaxy and cluster dynamics without invoking dark matter. In turn, energy conservation dictates that the increased binding must be balanced by an effectively decreased gravitational interaction outside the massive system. In this article, such suppression is estimated and its consequence for the Universe’s evolution is discussed. Observations are reproduced without need for dark energy.


2009 ◽  
Vol 18 (05) ◽  
pp. 865-887
Author(s):  
S. K. SRIVASTAVA ◽  
J. DUTTA

In this paper, the cosmology of the late and future universe is obtained from f(R) gravity with nonlinear curvature terms R2 and R3 (R is the Ricci scalar curvature). It is different from f(R) dark energy models where nonlinear curvature terms are taken as a gravitational alternative to dark energy. In the present model, neither linear nor nonlinear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms and appear in the Friedmann equation derived from f(R) gravitational equations. This approach has an advantage over f(R) dark energy models in three ways: (i) results are consistent with WMAP observations, (ii) dark matter is produced from the gravitational sector and (iii) the universe expands as ~ t2/3 during dominance of the curvature-induced dark matter, which is consistent with the standard cosmology. Curvature-induced dark energy mimics phantom and causes late acceleration. It is found that transition from matter-driven deceleration to acceleration takes place at the redshift 0.36 at time 0.59 t0 (t0 is the present age of the universe). Different phases of this model, including acceleration and deceleration during the phantom phase, are investigated. It is found that expansion of the universe will stop at the age of 3.87 t0 + 694.4 kyr. After this epoch, the universe will contract and collapse by the time of 336.87 t0 + 694.4 kyr. Further, it is shown that cosmic collapse obtained from classical mechanics can be avoided by making quantum gravity corrections relevant near the collapse time due to extremely high energy density and large curvature analogous to the state of the very early universe. Interestingly, the cosmological constant is also induced here; it is extremely small in the classical domain but becomes very high in the quantum domain. This result explains the largeness of the cosmological constant in the early universe due to quantum gravity effects during this era and its very low value in the present universe due to negligible quantum effect in the late universe.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743010 ◽  
Author(s):  
C. Sivaram

For Newtonian dynamics to hold over galactic scales, large amounts of dark matter (DM) are required which would dominate cosmic structures. Accounting for the strong observational evidence that the universe is accelerating requires the presence of an unknown dark energy (DE) component constituting about 70% of the matter. Several ingenious ongoing experiments to detect the DM particles have so far led to negative results. Moreover, the comparable proportions of the DM and DE at the present epoch appear unnatural and not predicted by any theory. For these reasons, alternative ideas like MOND and modification of gravity or general relativity over cosmic scales have been proposed. It is shown in this paper that these alternate ideas may not be easily distinguishable from the usual DM or DE hypotheses. Specific examples are given to illustrate this point that the modified theories are special cases of a generalized DM paradigm.


Author(s):  
Jian-Bin Bao ◽  
Nicholas P. Bao

There are unsolved problems related to inflation, gravity, dark matter, dark energy, missing antimatter, and the birth of the universe. Some of them can be better answered by assuming the existence of aether and hypoatoms. Both were created during the inflation in the very early universe. While aether forms vacuum, hypoatoms, composed of both matter and antimatter and believed to be neutrinos, form all observable matter. In vacuum, aether exists between the particle-antiparticle dark matter form and the dark energy form in a dynamic equilibrium: A + A-bar = gamma + gamma. The same reaction stabilizes hypoatoms and generates a 3-dimensional sink flow of aether that causes gravity. Based on the hypoatom structure, the singularity does not exist inside a black hole; the core of the black hole is a hypoatom star or neutrino star. By gaining enough mass, ca. 3 X 1022 Msun, to exceed neutrino degeneracy pressure, the black hole collapses or annihilates into the singularity, thus turning itself into a white hole or a Big Bang. The universe is anisotropic and nonhomogeneous. Its center, or where the Big Bang happened, is at about 0.671 times the radius of the observable universe at the Galactic coordinates (l, b) ~ (286°, -42°). If we look from the Earth to the center of the universe, the universe is rotating clockwise.


2021 ◽  
Author(s):  
Carlos A. Melendres

Abstract We present a physico-chemical approach towards understanding the mysteries associated with the Inflationary Big Bang model of Cosmic evolution based on a theory that space consists of energy quanta. We use thermodynamics to elucidate the expansion of the universe, its composition, and the nature of dark energy and dark matter. The universe started from an atomic size volume of space quanta at very high temperature. Upon expansion and cooling, phase transitions resulted in the formation of fundamental particles, and matter which grow into stars, galaxies, and clusters due to gravity. From cooling data on the universe, we constructed a thermodynamic phase diagram of composition of the universe, from which we obtained a correlation between dark energy and the energy of space. Using Friedmann’s equations, our Quantum Space model fitted well the WMAP data on cosmic composition with an equation of state parameter, w= -0.7. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang. It accelerated due to the dominance of dark energy at 7.25 x 109 years, in good agreement with BOSS measurements. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during reionization.


2018 ◽  
Vol 33 (20) ◽  
pp. 1830017 ◽  
Author(s):  
Pran Nath

We give here an overview of recent developments in high energy physics and cosmology and their interconnections that relate to unification, and discuss prospects for the future. Thus there are currently three empirical data that point to supersymmetry as an underlying symmetry of particle physics: the unification of gauge couplings within supersymmetry, the fact that nature respects the supersymmetry prediction that the Higgs boson mass lie below 130 GeV, and vacuum stability up to the Planck scale with a Higgs boson mass at [Formula: see text][Formula: see text]125 GeV while the Standard Model does not do that. Coupled with the fact that supersymmetry solves the big hierarchy problem related to the quadratic divergence to the Higgs boson mass square along with the fact that there is no alternative paradigm that allows us to extrapolate physics from the electroweak scale to the grand unification scale consistent with experiment, supersymmetry remains a compelling framework for new physics beyond the Standard Model. The large loop correction to the Higgs boson mass in supersymmetry to lift the tree mass to the experimentally observable value, indicates a larger value of the scale of weak scale supersymmetry, making the observation of sparticles more challenging but still within reach at the LHC for the lightest ones. Recent analyses show that a high energy LHC (HE-LHC) operating at 27 TeV running at its optimal luminosity of [Formula: see text] can reduce the discovery period by several years relative to HL-LHC and significantly extend the reach in parameter space of models. In the coming years several experiments related to neutrino physics, searches for supersymmetry, on dark matter and dark energy will have direct impact on the unification frontier. Thus the discovery of sparticles will establish supersymmetry as a fundamental symmetry of nature and also lend direct support for strings. Further, discovery of sparticles associated with missing energy will constitute discovery of dark matter with LSP being the dark matter. On the cosmology front more accurate measurement of the equation of state, i.e. [Formula: see text], will shed light on the nature of dark energy. Specifically, [Formula: see text] will likely indicate the existence of a dynamical field, possibly quintessence, responsible for dark energy and [Formula: see text] would indicate an entirely new sector of physics. Further, more precise measurements of the ratio [Formula: see text] of tensor to scalar power spectrum, of the scalar and tensor spectral indices [Formula: see text] and [Formula: see text] and of non-Gaussianity will hopefully allow us to realize a Standard Model of inflation. These results will be a guide to further model building that incorporates unification of particle physics and cosmology.


Universe ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 14 ◽  
Author(s):  
Vladimir A. Korotky ◽  
Eduard Masár ◽  
Yuri N. Obukhov

This paper analyzes the problem of global rotation in general relativity (GR) theory. Simple cosmological models with rotation and expansion are presented, which give a natural explanation of the modern values of the acceleration parameter at different red shifts without involving the concepts of “dark energy” and “dark matter”. It is shown that due to the smallness of the cosmological rotation, for its detection one should use observations that do not depend on the magnitude of the angular velocity of the Universe. Such tests include the effects of the cosmic mirror and the cosmic lens. For the first time on the basis of modern electronic catalogs the search on the celestial sphere of images of our Galaxy and other galaxies is made. Viable candidates for both effects have been found.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 8-16 ◽  
Author(s):  
BC Paul

Cosmological and astronomical observations predict that the present Universe is passing through an accelerating phase of expansion. The Universe emerged out of an exponential phase in the very early Universe. The scalar field of the standard model of particle physics when used in cosmology admits such a phase of expansion known as inflation. The most favourable condition for inflation with scalar field to admit an Inflationary scenario is that the potential energy must dominate over the kinetic energy which one obtains with a flat potential. Thereafter the Universe enters into a matter dominated phase when the field oscillates at the minimum of the potential. But it is not possible to accommodate the present accelerating phase in the Einstein’s gravity. It is known from observational analysis that about 73 % matter is responsible for the late phase expansion and 23 % matter called Dark Matter is responsible for a stable galaxy. We discuss here the relevant fields and theories that are useful for describing the late Universe. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10374 BIBECHANA 11(1) (2014) 8-16


Author(s):  
Gilles Cohen-Tannoudji ◽  
Jean-Pierre Gazeau

In the same way as the realization of some of the famous gedanken experiments imagined by the founding fathers of quantum mechanics has recently led to the current renewal of the interpretation of quantum physics, it seems that the most recent progresses of observational astrophysics can be interpreted as the realization of some cosmological gedanken experiments such as the removal from the universe of the whole visible matter or the cosmic time travel leading to a new cosmological standard model. This standard model involves two dark components of the universe, dark energy and dark matter. Whereas dark energy is usually associated with the cosmological constant, we propose to explain dark matter as a pure QCD effect, namely a gluon Bose Einstein condensate, following the transition from the quark gluon plasma phase to the colorless hadronic phase. Our approach not only allows us to assume a ratio Dark/Visible equal to 11/2 but also provides gluons and (anti-)quarks with an extra mass of vibrational nature. Such an interpretation would comfort the idea that, apart from the violation of the matter/antimatter symmetry satisfying the Sakharov’s conditions, the reconciliation of particle physics and cosmology needs not the recourse to any ad hoc fields, particles or hidden variables.


2011 ◽  
Vol 26 (33) ◽  
pp. 2501-2521
Author(s):  
GREG P. PROPER

The prevailing view in modern cosmology is that the universe is comprised of immense quantities of exotic materials (i.e. Dark Matter and Dark Energy) that have yet to be positively identified. However, there is also a small group of scientists who believe that the answer to this dilemma is to be found in the modification of gravity (i.e. General Relativity). This short paper states that if we make the bold assumption that all objects/observers are comprised of sets of spacetime coordinates that change (albeit slowly) as the universe ages, then three puzzles that currently confront cosmologists, astronomers and astrophysicists can easily be answered using relatively simple calculations. The condition necessary to explore this possibility can be obtained if one postulates that relativistic gravitational potential lessens (in absolute magnitude) everywhere as the universe ages (n). That is, the spacetime metric gμν(x)→gμν(x, n). If gravity behaves in this manner, then it can be shown that it is the causitive agent of indeterminism in nature.


Sign in / Sign up

Export Citation Format

Share Document