scholarly journals The physical-chemical properties of substance of the bright fireball EN171101 Turyi Remety

2012 ◽  
Vol 10 (H16) ◽  
pp. 171-171
Author(s):  
Klim Churyumov ◽  
Rudolf Belevtsev ◽  
Emlen Sobotovich ◽  
Svitlana Spivak ◽  
Tetyana Churyumova

AbstractIn 2007-2011 searches were conducted for mineralogical and geochemical studies of the soil in the region of fall down of a bright fireball EN171101 “Turyi Remety“ matter in Perechyn district of Transcarpathian. In the assumed location of the fall of a meteorite material for analysis was taken from the bottom of streams of Transcarpathian Mountains. In this matter we have been found numerous small magnetic spheres (microspherul) and fused segments, which have enough large sizes - up to 5 mm in diameter, which probably are fragments of the Turyi Remety meteoroid. One of the known signs of fireballs are sand-sized magnetic balls (by diameter 0.1-1.0 mm), which are often found in the magnetic concentrate fraction. This small balls, together with fragments of fused iotsit (FeO) are formed during the ablation of the meteoroid, and their sizes decreases during the motion of the meteoroid in the Earths atmosphere. From the east to the west, the radius of the balls in the study area decreased from an average of 0.7-0.5 mm to 0.1-0.3 mm. The sizes of such balls, as glowing molten particles of the meteoroid, are in good agreement with calculations based on the energy loss of the Turyi Remety meteoroid. This confirms the cosmic origin of these found small balls. Pre-calculated physical parameters of the Turyi Remety meteoroid are the velocity, mass, kinetic energy, the resistance force during ablation, the average fireball particle radius along trajectory path of a meteoroid fragments depending from the mass and size. Rapid mass loss of the meteoroid in more than 10 times, stronger, shorter ablation and damping fireball at the high altitude say about instability and the participation of the meteoroid gas in ablation. Perhaps the presence of ice, and other fireball gases in the meteoroid composition shows that its composition was close to comet one or to a chondrite with ice (gas hydrates). Especially likely gaseous hydrates of heavy gases such as CO2, H2S, hydrocarbons (propane, butane, etc.).

1986 ◽  
Vol 21 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Barry G. Oliver ◽  
Klaus L.E. Kaiser

Abstract The concent rat ions of hexachloroethane (HCE), hexachlorobutadiene (HCBD), pentachlorobenzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in large volume water samples show that the major sources of these chemicals to the St. Clair River are Dow Chemical Company effluents and, to a lesser degree, Sarnia’s Township ditch which drains one of Dow’s waste disposal sites. Tributaries entering the river on both sides of the Canada/United States border contain measurable concentrations of these chemicals indicating low level contamination throughout the area. The degree of water/suspended sediment partitioning of the chemicals (Kp) was studied. Kp values for the individual chemicals changed in a manner consistent with changes in their physical-chemical properties.


2018 ◽  
Vol 13 (4) ◽  
pp. 79-91 ◽  
Author(s):  
E.Sh. Nasibullaeva

The paper presents a generalized mathematical model and numerical investigation of the problem of acoustic scattering from a single sound-permeable sphere during the passage of two types of waves - spherical from a monopole radiation source and a plane one. In solving the Helmholtz equation, a numerical technique based on the fast method of multipoles is used, which allows achieving high accuracy of the results obtained at the lowest cost of computer time. The calculations are compared with known experimental data and a good agreement is obtained. The formulas for calculating the main characteristic of the scattering field (the total scattering cross section) for a sound-permeable sphere are generalized. The effect on this characteristic of the physical parameters of media outside and inside the sphere, such as the density and speed of sound, is shown. A numerical parametric analysis of the pressure distribution around a single sound-permeable sphere for different values of the wave radius, density, and speed of sound of the outer and inner medium of the sphere is carried out. The obtained results will later be used for test verification calculations for the numerical solution of the generalized problem of acoustic scattering of a set of sound-permeable spheres (coaxial or arbitrarily located in space).


2020 ◽  
Vol 20 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Ponnurengam M. Sivakumar ◽  
Matin Islami ◽  
Ali Zarrabi ◽  
Arezoo Khosravi ◽  
Shohreh Peimanfard

Background and objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. Methods and results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.


2021 ◽  
Vol 11 (10) ◽  
pp. 4417
Author(s):  
Veronica Vendramin ◽  
Gaia Spinato ◽  
Simone Vincenzi

Chitosan is a chitin-derived fiber, extracted from the shellfish shells, a by-product of the fish industry, or from fungi grown in bioreactors. In oenology, it is used for the control of Brettanomyces spp., for the prevention of ferric, copper, and protein casse and for clarification. The International Organisation of Vine and Wine established the exclusive utilization of fungal chitosan to avoid the eventuality of allergic reactions. This work focuses on the differences between two chitosan categories, fungal and animal chitosan, characterizing several samples in terms of chitin content and degree of deacetylation. In addition, different acids were used to dissolve chitosans, and their effect on viscosity and on the efficacy in wine clarification were observed. The results demonstrated that even if fungal and animal chitosans shared similar chemical properties (deacetylation degree and chitin content), they showed different viscosity depending on their molecular weight but also on the acid used to dissolve them. A significant difference was discovered on their fining properties, as animal chitosans showed a faster and greater sedimentation compared to the fungal ones, independently from the acid used for their dissolution. This suggests that physical–chemical differences in the molecular structure occur between the two chitosan categories and that this significantly affects their technologic (oenological) properties.


2020 ◽  
Vol 59 (1) ◽  
pp. 441-454
Author(s):  
Carlos A. Martínez-Pérez

AbstractIn the last years, electrospinning has become a technique of intense research to design and fabricate drug delivery systems (DDS), during this time a vast variety of DDS with mainly electrospun polymers and many different active ingredient(s) have been developed, many intrinsic and extrinsic factor have influence in the final system, there are those that can be attributed to the equipment set up and that to the physical-chemical properties of the used materials in the fabrication of DDS. After all, this intense research has generated a great amount of DDS loaded with one or more drugs. In this manuscript a review with the highlights of different kind of systems for drug delivery systems is presented, it includes the basic concepts of electrospinning, types of equipment set up, polymer/drug systems, limitations and challenges that need to be overcome for clinical applications.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Rama Subba Reddy Gorla

AbstractIn this study, the ignition characteristics and the flow properties of the mixed convection flow are presented. Detailed formulations of the forced, natural and mixed convection problems have been discussed. In order to avoid inconvenient switch between the forced and natural convection we introduce a continuous transformation in the mixed convection. We make a comparison between these situations which reveal a good agreement. For mixed convection flow, the ignition distance is explicitly expressed as a function of the Prandtl number, reaction parameter and wall temperature. It has been observed that owing to the increase of the aforesaid parameters, the thermal ignition distance is reduced. Numerical results are illustrated for velocity, temperature, and concentration for different physical parameters. Furthermore, the development of combustion is presented by using streamlines, isotherms and isolines of fuel and oxidizer.


2021 ◽  
Vol 494 ◽  
pp. 119334
Author(s):  
Vinicius Evangelista Silva ◽  
Thiago Assis Rodrigues Nogueira ◽  
Cassio Hamilton Abreu-Junior ◽  
Arun Dilipkumar Jani ◽  
Salatier Buzetti ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


Sign in / Sign up

Export Citation Format

Share Document