scholarly journals The Debris Disk Fraction for M-dwarfs in Nearby Young Moving Groups

2015 ◽  
Vol 10 (S314) ◽  
pp. 159-162 ◽  
Author(s):  
Alex Binks

AbstractI present the first substantial work to measure the fraction of debris disks for M-dwarfs in nearby moving groups (MGs). Utilising the AllWISE IR catalog, 17 out of 151 MG members are found with an IR photometric excess indicative of disk structure. The M-dwarf debris disk fraction is ≲6 per cent in MGs younger than 40 Myr, and none are found in the groups older than 40 Myr. Simulations show, however, that debris disks around M-dwarfs are not present above a WISEW1-W4 colour of ~2.5, making calculating the absolute disk fractions difficult. The debris disk dissipation timescale appears to be faster than for higher-mass stars, and mechanisms such as enhanced stellar wind drag and/or photoevaporation could account for the more rapid decline of disks observed amongst M-dwarfs.

2019 ◽  
Vol 15 (9) ◽  
pp. 43
Author(s):  
Nguyễn Thành Đạt ◽  
Phan Bảo Ngọc

In this paper, we present our search for debris disks in a sample of nearby late-M dwarfs based on infrared data of the Wide Infrared Survey Explorer. Using archival data, we constructed spectral energy distributions of these targets to detect their infrared excess. We detected infrared excess only in one target. This late-M dwarf is an excellent benchmark for further study of disks around very low-mass objects.


2019 ◽  
Vol 488 (1) ◽  
pp. 633-644 ◽  
Author(s):  
A A Vidotto ◽  
N Feeney ◽  
J H Groh

ABSTRACT New instruments and telescopes, such as SPIRou, CARMENES, and Transiting Exoplanet Survey Satellite (TESS), will increase manyfold the number of known planets orbiting M dwarfs. To guide future radio observations, we estimate radio emission from known M dwarf planets using the empirical radiometric prescription derived in the Solar system, in which radio emission is powered by the wind of the host star. Using solar-like wind models, we find that the most promising exoplanets for radio detections are GJ 674 b and Proxima b, followed by YZ Cet b, GJ 1214 b, GJ 436 b. These are the systems that are the closest to us (<10 pc). However, we also show that our radio fluxes are very sensitive to the unknown properties of winds of M dwarfs. So, which types of winds would generate detectable radio emission? In a ‘reverse engineering’ calculation, we show that winds with mass-loss rates $\dot{M} \gtrsim \kappa _{\rm sw} /u_{\rm sw}^3$ would drive planetary radio emission detectable with present-day instruments, where usw is the local stellar wind velocity and κsw is a constant that depends on the size of the planet, distance, and orbital radius. Using observationally constrained properties of the quiescent winds of GJ 436 and Proxima Cen, we conclude that it is unlikely that GJ 436 b and Proxima b would be detectable with present-day radio instruments, unless the host stars generate episodic coronal mass ejections. GJ 674 b, GJ 876 b, and YZ Cet b could present good prospects for radio detection, provided that their host stars’ winds have $\dot{M} u_{\rm sw}^{3} \gtrsim 1.8\times 10^{-4} \, {\rm M}_\odot \,{\rm yr}^{-1}\, ({\rm km\,s^{-1}})^{3}$.


2018 ◽  
Vol 613 ◽  
pp. L6 ◽  
Author(s):  
E. Sissa ◽  
J. Olofsson ◽  
A. Vigan ◽  
J. C. Augereau ◽  
V. D’Orazi ◽  
...  

Debris disks are usually detected through the infrared excess over the photospheric level of their host star. The most favorable stars for disk detection are those with spectral types between A and K, while the statistics for debris disks detected around low-mass M-type stars is very low, either because they are rare or because they are more difficult to detect. Terrestrial planets, on the other hand, may be common around M-type stars. Here, we report on the discovery of an extended (likely) debris disk around the M-dwarf GSC 07396−00759. The star is a wide companion of the close accreting binary V4046 Sgr. The system probably is a member of the β Pictoris Moving Group. We resolve the disk in scattered light, exploiting high-contrast, high-resolution imagery with the two near-infrared subsystems of the VLT/SPHERE instrument, operating in the Y J bands and the H2H3 doublet. The disk is clearly detected up to 1.5′′ (~110 au) from the star and appears as a ring, with an inclination i ~ 83°, and a peak density position at ~70 au. The spatial extension of the disk suggests that the dust dynamics is affected by a strong stellar wind, showing similarities with the AU Mic system that has also been resolved with SPHERE. The images show faint asymmetric structures at the widest separation in the northwest side. We also set an upper limit for the presence of giant planets to 2 MJ. Finally, we note that the 2 resolved disks around M-type stars of 30 such stars observed with SPHERE are viewed close to edge-on, suggesting that a significant population of debris disks around M dwarfs could remain undetected because of an unfavorable orientation.


2015 ◽  
Vol 10 (S314) ◽  
pp. 69-70
Author(s):  
Sébastien Lépine

AbstractThe SUPERBLINK survey catalogs all stars brighter than R = 19 mag and with proper motions larger than 40 mas yr−1, down to a declination of −33○. The catalog inevitably includes a significant fraction of the presumed low-mass members of several nearby young moving groups (Beta Pic, AB Dor, Tuc-Hor, Argus), or low-mass escapees from the Hyades and Pleiades clusters. We discuss opportunities and challenges in identifying the missing M dwarf members of these moving groups. While rounding up the majority of the potential M dwarf members of these groups, such samples are significantly affected by co-moving field stars, both young and old, due to the heavy clumping of the local field population in velocity space.


2020 ◽  
Vol 635 ◽  
pp. A19 ◽  
Author(s):  
N. Engler ◽  
C. Lazzoni ◽  
R. Gratton ◽  
J. Milli ◽  
H. M. Schmid ◽  
...  

Context. Young stars with debris disks are the most promising targets for an exoplanet search because debris indicate a successful formation of planetary bodies. Debris disks can be shaped by planets into ring structures that give valuable indications on the presence and location of planets in the disk. Aims. We performed observations of the Sco-Cen F star HD 117214 to search for planetary companions and to characterize the debris disk structure. Methods. HD 117214 was observed with the SPHERE subsystems IRDIS, IFS, and ZIMPOL at optical and near-IR wavelengths using angular and polarimetric differential imaging techniques. This provided the first images of scattered light from the debris disk with the highest spatial resolution of 25 mas and an inner working angle <0.1″. With the observations with IRDIS and IFS we derived detection limits for substellar companions. The geometrical parameters of the detected disk were constrained by fitting 3D models for the scattering of an optically thin dust disk. Investigating the possible origin of the disk gap, we introduced putative planets therein and modeled the planet–disk and planet–planet dynamical interactions. The obtained planetary architectures were compared with the detection limit curves. Results. The debris disk has an axisymmetric ring structure with a radius of 0.42(±0.01)″ or ~45 au and an inclination of 71(±2.5)° and exhibits a 0.4″ (~40 au) wide inner cavity. From the polarimetric data, we derive a polarized flux contrast for the disk of (Fpol)disk/F∗ = (3.1 ± 1.2) × 10−4 in the RI band. Conclusions. The fractional scattered polarized flux of the disk is eight times lower than the fractional IR flux excess. This ratio is similar to the one obtained for the debris disk HIP 79977, indicating that dust radiation properties are similar for these two disks. Inside the disk cavity we achieve high-sensitivity limits on planetary companions with a mass down to ~4 MJ at projected radial separations between 0.2″ and 0.4″. We can exclude stellar companions at a radial separation larger than 75 mas from the star.


1998 ◽  
Vol 11 (1) ◽  
pp. 419-420
Author(s):  
David W. Latham

What is known about the masses of main-sequence stars from the analysis of binary orbits? Double-lined eclipsing binaries are the main source of very precise stellar masses and radii (e.g. Andersen 1997), contributing more than 100 determinations with better than 2% precision over the range 0.6 to 20 Mʘ. For lower-mass stars we are forced to turn to nearby systems with astrometric orbits (e.g. Henry et al. 1993). Not only is the number of good mass determinations from such systems smaller, but also the precision is generally poorer. We are approaching an era when interferometers should have a major impact by supplying good astrometric orbits for dozens of double-lined systems. Already we are beginning to see the sorts of results to expect from this (e.g. Torres et al. 1997). Figure 1. Mass vs. absolute V magnitude for eclipsing binaries (circles) and nearby astrometric binaries (squares) Figure 1 is an updated version of a diagram presented by Henry et al. (1993, their Figure 2). It shows the general run of mass determinations from about 10 Mʘ down to the substellar limit near 0.075 Mʘ. Ninety of the points in Figure 1 are for eclipsing binary masses from Andersen’s review (1991) and are plotted as open circles. The results for eclipsing binaries published since 1991 are plotted as 30 filled circles, adopting the same limit of 2% for the mass precision. In most cases the uncertainties are similar to the size of the symbols. Especially noteworthy is the pair of new points for CM Draconis (Metcalfe et al. 1996) with masses near 0.25 Mʘ. Together with the points for YY Geminorum near 0.6 Mʘ, these are the only M dwarfs that have precise mass determinations. For the most part we are forced to rely on nearby stars with astrometric orbits, to fill in the M dwarf region of the diagram. We have used filled squares in Figure 1 for 29 such systems from Henry et al. (1993), updated using 14 new parallaxes from Hipparcos and 4 from the new Yale Parallax Catalog (1995). Gliese 508 is not included, because it is now known to be a triple, while Gliese 67AB, 570BC, and 623AB are not included because there are not yet any direct measurements of the V magnitude difference for these systems.


2019 ◽  
Vol 490 (3) ◽  
pp. 4107-4120
Author(s):  
J Bentley ◽  
C G Tinney ◽  
S Sharma ◽  
D Wright

ABSTRACT We present criteria for the selection of M-dwarfs down to G < 14.5 using all-sky survey data, with a view to identifying potential M-dwarfs, to be confirmed spectroscopically by the FunnelWeb survey. Two sets of criteria were developed. The first, based on absolute magnitude in the Gaia G passband, with MG > 7.7, selects 76,392 stars, with 81.0 per cent expected to be M-dwarfs at a completeness of >97 per cent. The second is based on colour and uses Gaia, WISE, and 2MASS all-sky photometry. This criteria identifies 94,479 candidate M-dwarfs, of which between 29.4 per cent and 47.3 per cent are expected to be true M-dwarfs, and which contains 99.6 per cent of expected M-dwarfs. Both criteria were developed using synthetic galaxy model predictions, and a previously spectroscopically classified set of M- and K-dwarfs, to evaluate both M-dwarf completeness and false-positive detections (i.e. the non-M-dwarf contamination rate). Both criteria used in combination demonstrate how each excludes different sources of contamination. We therefore developed a final set of criteria that combines absolute magnitude and colour selection to identify 74,091 stars. All these sets of criteria select numbers of objects feasible for confirmation via massively multiplexed spectroscopic surveys like FunnelWeb.


2013 ◽  
Author(s):  
Lewis C. Roberts ◽  
Geoffrey Bryden ◽  
Wesley Traub ◽  
Stephen Unwin ◽  
John Trauger ◽  
...  
Keyword(s):  

1996 ◽  
Vol 171 ◽  
pp. 441-441
Author(s):  
Ricardo Piorno Schiavon ◽  
Beatriz Barbuy

We compute synthetic spectra in the region around 1 μm, including the Wing-Ford band (WFB) of Iron Hydride (FeH) in the calculations. This band is known to be a good indicator of surface gravities of M stars. Employing Kurucz model atmospheres, we study the response of the intensity of the WFB to atmospheric parameters and check our results against observations of M dwarfs. This study is part of an ongoing project which aims to investigate the M dwarf-to-giant ratio in galaxies, through a population synthesis method, exploring a number of spectral indicators in the near infrared, such as the WFB, the NaI, CaII and CO near infrared features.


2017 ◽  
Vol 607 ◽  
pp. A65 ◽  
Author(s):  
É. Sezestre ◽  
J.-C. Augereau ◽  
A. Boccaletti ◽  
P. Thébault

Context. Recent observations of the edge-on debris disk of AU Mic have revealed asymmetric, fast outward-moving arch-like structures above the disk midplane. Although asymmetries are frequent in debris disks, no model can readily explain the characteristics of these features. Aims. We present a model aiming to reproduce the dynamics of these structures, more specifically their high projected speeds and their apparent position. We test the hypothesis of dust emitted by a point source and then expelled from the system by the strong stellar wind of this young M-type star. In this model we make the assumption that the dust grains follow the same dynamics as the structures, i.e., they are not local density enhancements. Methods. We perform numerical simulations of test particle trajectories to explore the available parameter space, in particular the radial location R0 of the dust producing parent body and the size of the dust grains as parameterized by the value of β (ratio of stellar wind and radiation pressure forces over gravitation). We consider the cases of a static and of an orbiting parent body. Results. We find that for all considered scenarios (static or moving parent body), there is always a set of (R0,β) parameters able to fit the observed features. The common characteristics of these solutions is that they all require a high value of β, of around 6. This means that the star is probably very active, and the grains composing the structures are submicronic in order for observable grains to reach such high β values. We find that the location of the hypothetical parent body is closer in than the planetesimal belt, around 8 ± 2 au (orbiting case) or 28 ± 7 au (static case). A nearly periodic process of dust emission appears, of 2 yr in the orbiting scenarios and 7 yr in the static case. Conclusions. We show that the scenario of sequential dust releases by an unseen point-source parent body is able to explain the radial behavior of the observed structures. We predict the evolution of the structures to help future observations discriminate between the different parent body configurations that have been considered. In the orbiting parent body scenario, we expect new structures to appear on the northwest side of the disk in the coming years.


Sign in / Sign up

Export Citation Format

Share Document