Effects of fibre level and particle size on rumen microbial fermentation and protein metabolism using liquid and solid associated bacteria

2001 ◽  
Vol 2001 ◽  
pp. 149-149
Author(s):  
M. Rodríguez ◽  
S. Calsamiglia ◽  
A. Ferret

The effects of fibre level (F) and forage particle size (S) on ruminal fermentation profile is often mediated through changes in feed intake, rates of digestion or passage, ruminal pH and/or bacteria population. Therefore, most in vivo studies have confounded the direct effect of F or S with changes in the rumen environment. In vitro systems allow to control several fermentation conditions independently (pH, flow rates, intake). Total, bacterial and dietary nitrogen (N) flows are generally calculated using liquid associated bacteria (LAB), although solid associated bacteria (SAB) represent about 80% of total bacterial population in the rumen (Olobobokun and Craig, 1988). The objective of this experiment was to study the effects of F and S on microbial fermentation and N metabolism using LAB or SAB values in a dual flow continuos culture system.

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 554
Author(s):  
Sonny C. Ramos ◽  
Chang-Dae Jeong ◽  
Lovelia L. Mamuad ◽  
Seon-Ho Kim ◽  
A-Rang Son ◽  
...  

The effects of rumen buffer agents on ruminal fermentation parameters and bacterial community composition were determined using in vitro and in vivo experiments in three rumen-cannulated, high-concentrate fed Holstein Friesian dairy cows. Experiment 1 in vitro treatments included bentonite, calcium carbonate, calcium oxide, sodium bicarbonate, sodium sesquicarbonate, and processed coral, and unbuffered samples served as the control. Experiment 2 in vitro treatments were based on the formulation of various combinations of the buffer agents used in Experiment 1. Combinations were selected for the in vivo study based on their buffering ability. Calcium oxide, sodium bicarbonate, and sodium sesquicarbonate stabilized the ruminal pH and improved in vitro rumen fermentation. The combined buffer agents had a significant effect on pH, buffering capacity, total gas, and total volatile fatty acids. Firmicutes and Bacteroidetes were the dominant phyla in both treatments and the control. Ruminococcus and Prevotella were found to be the dominant genera. Ruminococcus bromii was predominant in the treatment group. Prevotella jejuni was more abundant in the control group compared to the treatment group, in which its abundance was very low. Ruminococcus flavefaciens and Intestinimonas butyriciproducens gradually increased in abundance as cows received treatment. Overall, a high-concentrate diet administered to cows induced adverse changes in ruminal pH; however, buffer supplementation enhanced ruminal fermentation characteristics and altered bacterial community, which could contribute to preventing ruminal acidosis.


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A750-A750
Author(s):  
Sojin Lee ◽  
Joon Young Park ◽  
Goo-Young Kim ◽  
Sang Woo Jo ◽  
Minhyuk Yun ◽  
...  

BackgroundSuccessful clinical translation of mRNA therapeutics requires an appropriate delivery strategy to overcome instability of mRNA and facilitate cellular uptake into the cells.1 Several lipid based nanoparticle approaches that encapsulate mRNA, notably lipid nanoparticle (LNP), have been developed, but their efficiency for delivery to certain target tissues and toxicity profiles still have room for improvement. The application of a novel polymer based nanoparticle technology platform, so called Stability Enhanced Nano Shells (SENS) for mRNA (mSENS) as a mRNA delivery platform for a cancer vaccine was demonstrated.MethodsThe physicochemical properties of mSENS formulation, particle size and encapsulation efficiency, were characterized using dynamic light scattering (DLS) and gel retardation assay. Using luciferase-encoding mRNA, the protein expression levels in vitro and in vivo were evaluated by luciferase assay or bioluminescence imaging (BLI), respectively. For cancer vaccine studies, antigen (tyrosinase-related protein 2 (Trp-2))-specific T cell responses were assessed by immunophenotyping mouse splenocytes using flow cytometry and by the enzyme-linked immunosorbent spot (ELISPOT) assay. The anti-tumor efficacy was studied in B16F10 lung tumor model in C57BL/6 mice. Liver and systemic toxicity of mSENS treated mice was evaluated through blood chemistry and complete blood count (CBC) tests.ResultsA library of mSENS formulations complexed with luciferase-encoding mRNA, were characterized for their particle size, surface charge, encapsulation efficiency, colloidal stability, and in vitro and in vivo luciferase protein expression level. Upon systemic administration in mice, varying biodistribution profiles were observed, implicating the potential for tailored delivery to target tissues. Particularly, cancer vaccine application was further developed leveraging the formulation with preferential spleen delivery. Following vaccination with Trp-2 mRNA encapsulated with mSENS (Trp-2 mRNA-mSENS) in B16F10 tumor bearing mice, strong Trp-2 antigen-specific IFN-γ T-cell responses were observed. Generated anti-tumor immunity also marked suppression of B16F10 lung tumors were observed in Trp-2-mSENS immunized mice compared to non-immunized controls, demonstrating the potential of mSENS as a mRNA delivery platform for the application for vaccine.ConclusionsProprietary biodegradable polymer based-mSENS platform offers an attractive delivery strategy for mRNA by tailoring to specific therapeutic applications. Depending on the application, whether it’s a vaccine or protein replacement, a rationally designed mSENS formulation can efficiently distribute mRNA to specific tissues. In particular, application of a splenic mSENS formulation for a cancer vaccine has been demonstrated in murine tumor model. In summary, mRNA delivery through mSENS platform is expected to provide significant opportunities in clinical development for mRNA therapeutics.Ethics ApprovalThe study was approved by Samyang Biopharmaceuticals’ IACUC (Institutional Animal Care and Use Committee), approval number SYAU-2027.ReferencePiotr S. Kowalski, Arnab Rudra, Lei Miao, and Daniel G. Anderson, delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular Therapy Vol. 27 No 4 April 2019.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 287-287
Author(s):  
Cheyanne A Myers ◽  
Mario de Haro Marti ◽  
Mireille Chahine ◽  
Gwinyai E Chibisa

Abstract Clinoptilolite (CLN), could potentially improve nitrogen (N) utilization when fed to beef cattle as it can bind ruminal-ammonia-N (NH3-N), limiting its loss and subsequent detoxification into urea-N, which is released into blood and is excreted in urine. However, the effectiveness of CLN is influenced by physical properties such as particle size. Although decreasing the particle size has been shown to increase the binding of ammonium in-vitro, this remains to be evaluated in vivo. Therefore, the objective of this study was to determine the effects of feeding CLN of two different particle sizes (30 and 400 µm) on ruminal NH3-N and plasma-urea-N (PUN) concentrations, ruminal pH, and nutrient intake and apparent total-tract digestibility. Six ruminally-cannulated beef heifers (mean initial BW± SD, 620.8 ± 30.15) were used in a replicated 3 × 3 Latin square design with 21 d periods (sample collection from d 15 to 21). Dietary treatments were: 1) finishing ration with no supplement (CON), 2) CON +30-µm CLN (CL-30), and 3) CON + 400-µm CLN (CL-400). Clinoptilolite was top-dressed (2.5% of diet DM) during morning feeding. Intake was measured daily. Ruminal fluid was collected on d 19 for NH3-N analysis and blood was collected 3 h post-feeding on d 21 for PUN analysis. Indwelling pH loggers were used to measure ruminal pH (d 15 to 21) and grab fecal samples were collected from d 19 to 21 to determine total-tract nutrient digestibility. Statistical analysis was conducted using PROC MIXED in SAS. There was no treatment effect (P ≥ 0.13) on ruminal NH3-N and PUN concentrations, ruminal pH, and nutrient (DM, OM, NDF, ADF and CP) intake and apparent total tract digestibility. In conclusion, feeding CLN to finishing heifers had no effect on measures of N utilization, ruminal pH and nutrient intake and apparent total-tract digestibility.


2018 ◽  
Vol 39 (4) ◽  
pp. 1669
Author(s):  
Tatiana García Díaz ◽  
Antonio Ferriani Branco ◽  
Luís Carlos Vinhas Ítavo ◽  
Geraldo Tadeu dos Santos ◽  
Silvana Teixeira Carvalho ◽  
...  

The aim of this study was to evaluate the effect of increasing levels of cashew nut shell liquid (CNSL) in ruminant diets on in vitro dry matter digestibility (IVDMD), gas production kinetics, ruminal fermentation parameters, ammoniacal nitrogen concentration (NH3-N), and pH of the artificial rumen contents. The experimental design was completely randomized in a factorial 5 x 4 + 1 design, with five concentrate levels (200, 400, 600, 800, and 1,000 g kg-1 DM) and four CNSL levels (0, 0.3, 0.6, and 1.2 g kg-1 DM), as well as a control diet comprising only whole-plant corn silage, totaling 21 treatments. The inclusion of concentrate linearly increased IVDMD, while CNSL levels showed a quadratic effect, with the maximum estimated at 0.5 g kg-1 of CNSL. The total gas production, the disappearance of the substrate, the fraction of slow degradation (fraction VF2), and the respective degradation rate (fraction µ2) linearly increased with increasing levels of concentrate in the diet. Increasing concentrate levels resulted in a linear increase in the concentration of NH3-N and a reduction in the pH of the rumen liquid. Increasing CNSL levels decreased the concentration of NH3-N and increased the ruminal pH. The inclusion of 0.5 g CNSL kg-1 in the ruminant diets improved IVDMD, without altering the kinetic parameters of ruminal fermentation. The addition of CNSL to ruminant diets reduces ammoniacal nitrogen production and can avoid drastic reductions in ruminal pH, favoring better fermentation in the rumen.


2020 ◽  
Vol 25 (8) ◽  
pp. 971-988
Author(s):  
Sonia Gera ◽  
Venkatesh Pooladanda ◽  
Chandraiah Godugu ◽  
Veerabhadra Swamy Challa ◽  
Jitendra Wankar ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kacper Libera ◽  
Malgorzata Szumacher-Strabel ◽  
Mina Vazirigohar ◽  
Wiktor Zieliński ◽  
Rafal Lukow ◽  
...  

AbstractThe starch content of triticale and oat grains provides much of their readily available energy. Synchronizing energy and nitrogen in the rumen is important in optimizing profitability; for this reason, ammonia processing of these grains was evaluated for its potential to modify ruminal fermentation and to improve milk production performance. A mixture of ground triticale and oats (CONG, in a 60:40 ratio 40 by DM) was treated with urea (5 kg/1000 kg) and urease additive (20 kg/1000 kg) containing 200 g/kg of moisture, for 2 wk (UREG). The urea treatment enhanced the pH and CP content of grains by 34% and 52%, respectively. In a batch culture study, CONG or UREG as the only substrate was incubated in a buffered ruminal fluid. Compared to CONG, UREG increased pH, total VFA concentration, total gas, and disappearance of DM, while reducing CH4 production, whereas NH3 concentration increased and entodiniomorph counts tended to increase. In the in vivo study, cows were randomly allocated to two dietary groups (n = 24) and were offered TMR based on maize and grass silage, containing either 155 g/kg of CONG and 80 g/kg of soybean meal (CONT) or 155 g/kg of UREG and 59 g/kg of soybean meal (URET) for 31 d. Ruminal fluid was collected (n = 10) using rumenocentesis. The relative abundances of Streptococcus bovis decreased, but Megasphaera elsdenii, methanogens, and ammonia-producing bacteria increased by URET. Entodiniomorph and holotrich counts were decreased by URET. Feeding with URET increased ruminal pH and concentrations of total VFA, acetate, branched-chain VFA, and NH3. Feeding with URET also increased milk yield. These results demonstrate that replacing untreated triticale and oat grains with urea-treated grains can beneficially modulate ruminal microbiota and fermentation, consequently improving production performance and profitability.


Sign in / Sign up

Export Citation Format

Share Document