Effects of B vitamins and methyl group donors on milk production, milk composition and blood biochemistry in dairy cows

2002 ◽  
Vol 2002 ◽  
pp. 196-196
Author(s):  
S.E Richards ◽  
S Hicklin ◽  
T Lord ◽  
A Nickson ◽  
J Long ◽  
...  

Recent reviews highlight the importance of the liver in the coordination of nutrient fluxes in support of pregnancy and lactation (e.g. Drackley et al., 2001). Mobilisation of body fat reserves in the late dry period and early lactation leads to an increase in uptake of non-esterified fatty acids (NEFA) by the liver. Their metabolic fate is either oxidation or esterification into triacylglycerides (TAG) that are either exported in very low density lipoproteins (VLDL) or accumulated within liver cells. Recent evidence indicates that TAG accumulation impairs ureagenic and gluconeogenic capacity of the liver, with consequent reductions in feed intake and milk yield, increased incidence of disease and decreased reproductive performance (Overton and Piepenbrink, 1999).LiFTTM (NuTec Ltd.) is a proprietary mixture of B-group vitamins and methyl group donors (rumen protected choline, niacin, vitamin B12, biotin, folic acid and thiamine) designed to reduce the accumulation of TAG in the liver and accelerate VLDL export. The objective of this experiment was to evaluate the effect of LiFT on milk yield and composition and concentrations of metabolites in blood.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1054
Author(s):  
Zelmar Rodriguez ◽  
Elise Shepley ◽  
Pedro P. C. Ferro ◽  
Nilon L. Moraes ◽  
Acir M. Antunes ◽  
...  

Monitoring the body condition score (BCS) of dairy cows is a management strategy that can assist dairy producers in decision-making. The BCS and its variations reflect the level of body fat reserves and fat mobilization throughout the different stages of lactation. Cows that mobilize excessive amounts of fat reserves in response to the increased energy requirements of the transition period are more likely to have higher beta-hydroxybutyrate (BHB) concentration in blood, leading to a higher incidence of hyperketonemia postpartum. In this study, our main objective was to evaluate how both BCS (at 21 d prior to the expected calving date, −21 BCS) and change in BCS during the late dry period (−21 d to calving, ∆BCS) are associated with temporal patterns of blood BHB concentrations during the first two weeks of lactation. Our secondary objective was to characterize the relationship between the change in BCS in the late dry period, and milk yield and milk composition in the first milk test postpartum. In this retrospective cohort study, we assessed BCS at 21 (±3) days before the expected calving date and within three days after calving. Blood BHB concentration was measured at days 3 (±1), 7 (±1), and 14 (±1) postpartum. Hyperketonemia (HYK) was defined as blood BHB ≥ 1.2 mmol/L. To evaluate how −21 BCS and ∆BCS during the late dry period were associated with BHB in early lactation, linear mixed-effects regression models with an unstructured covariate matrix were performed. The association between ∆BCS and incidence of postpartum HYK were determined using a multivariable log-binomial model. A linear regression model was used to evaluate the association between ∆BCS and milk yield and milk composition in the first monthly test-day. Covariates used for model adjustment include parity, season, and baseline BCS. We observed that cows with BCS ≥ 4.0 at 21 d before their expected calving date had the highest BHB concentration postpartum, but no evidence that BCS ≥ 4.0 at 21 d was associated with fluctuations of BHB over time. Cows that experienced a large BCS loss (larger than 0.5 units) during the late dry period had a 61% (95% CI: 1.04, 2.50) higher risk of developing HYK in early lactation and had higher BHB concentrations during early lactation compared with cows with no ∆BCS prepartum. These associations were observed independently of the BCS at −21 d prepartum (baseline). In addition, cows that lost more than 0.5 BCS unit in the late dry period produced 3.3 kg less milk (95% CI: −7.06, 0.45) at the first milk test compared to cows that had no ∆BCS during the late dry period. No evidence of an association between −21 BCS and ∆BCS in the late dry period and milk composition was observed in our study. These results suggest that dynamic measures of BCS during the late dry period, such as ∆BCS, are better at evaluating blood BHB patterns in early lactation than BCS measured at a single time point. Cows with larger BCS loss during the late dry period and with greater parity are more likely to have higher concentrations of blood BHB postpartum, with the highest concentrations reported at 7 d post-calving.


2019 ◽  
Vol 69 (4) ◽  
pp. 1195 ◽  
Author(s):  
I. Karagiannis ◽  
C. Brozos ◽  
E. Kiossis ◽  
C. Boscos ◽  
G. Fthenakis ◽  
...  

This Research Paper addresses the hypothesis whether in dairy ewes: periparturient β-hydroxybutyric acid (BHBA) and non-esterified fatty acids (NEFA) concentrations are associated with milk yield, composition and udder halves with increased somatic cell counts (SCC ≥ 0.5 × 106 cells/mL). A total of 186 Chios ewes reared under intensive system were used for this research. Serum BHBA and NEFA concentrations were measured before lambing (-30d,  -15d), and BHBA concentrations after lambing (+7d, +15d, +30d, +45d). Milk samples were collected at 15, 30 and 45days in milk (DIM). Total milk yield (MY) of the first 30, 60 and 90 DIM and total fortnightly milk yield (FMY) produced from 15 to 59 DIM were recorded. Positive associations between BHBA at +7d and MY of the first 30, 60 and 90 DIM were revealed (P < 0.001). For every increased unit of BHBA at +15d, +30d and +45d, FMY was decreased (DIM: 15 – 29 and 30 – 44) (P = 0.001 and P = 0.015, respectively) or increased (DIM: 45 – 59) (P < 0.001). BHBA before lambing (-30d, -15d) affected the number of halves presented SCC ≥ 0.5 × 106 cells/mL at 15 and 30 DIM (P = 0.011, P = 0.014, P = 0.009, P = 0.096, respectively). Finally, for every increased unit of BHBA during lactation (+15d, +30d, +45d) a decrease in the concentration of milk in proteins, solids not fat and lactose was noted (P < 0.001). This work demonstrates the associations of periparturient blood biochemical parameters (BHBA, NEFA) with milk yield and specific milk production characteristics.


2015 ◽  
Vol 44 (5) ◽  
pp. 21-24
Author(s):  
BA Useni ◽  
CJC Muller ◽  
CW Cruywagen

The objective of the study was to determine the effect of the duration of the dry period (DP) on the milk yield and milk composition during the following lactation. Milk performance records of 561 Holstein cows, with a previous DP from the Elsenburg Research Farm obtained from the National Milk Recording Scheme, were used in the study. Four groups of dairy cows were identified, based on the duration of their dry period, i.e. cows with a DP of less than 60 days, DP of 61 to 90 days, DP of 91 to 120 days and DP of more than 121 days. The number of records for each group was 76, 162, 83 and 240 lactations, respectively. An ANOVA was conducted using the Generalized Linear Model of SAS to compare milk yield and milk composition according to the DP length. Almost 43% of cows had a DP longer than 121 days, while less than 14% of cows had a DP of less than 60 days. The milk yield was positively affected by DP length. Cows with a DP of less than 60 days produced less milk than cows with longer (more than 61 days) dry periods, e.g. 6462 ± 321 vs. 7393 ± 99 kg. Results were similar for cows in their second and fourth parity. In addition, the milk composition of cows was also affected by DP length, i.e. higher fat and protein levels in the milk from cows with a short DP. Cows in the third lactation with a DP above 121 days produced more milk than the other DP groups. However, the milk composition of cows in the third lactation was not affected by DP length. A DP of less than 60 days reduced milk yield, while an extended DP of more than 121 days would be costly for the dairy farmer even though milk yield was higher. A long dry period may also result due to an excess body condition and calving complications during the subsequent lactation.Keywords: Dry period, milk yield, milk composition, dairy cows


1989 ◽  
Vol 49 (2) ◽  
pp. 183-191 ◽  
Author(s):  
G. P. Jones ◽  
P. C. Garnsworthy

ABSTRACTFour groups of six cows were fed from 12 weeks before calving to achieve condition scores at calving of 3·23 (F) and 1·98 (T). For the first 20 weeks of lactation all cows were given 10 kg/day of isonitrogenous (180 g crude protein per kg dry matter (DM)) compounds containing either a high (13·0 MJ/kg DM; HE) or a low (9·8 MJ/kg DM; LE) concentration of metabolizable energy, together with 3 kg/day molassed sugar-beet pulp and hay offered ad libitum.The mean milk yield of cows receiving compound HE (27·7 kg/day) was higher (P > 0·05) than that of cows receiving compound LE (25·6 kg/day). Cows in group FHE yielded 27·0 kg/day, compared with 25·5 kg/day for FLE (P > 0·05); cows in group THE yielded 28·4 kg/day compared with 25·17 kg/day for TLE (P <0·05). After peak lactation, milk yields were maintained better in group THE but declined at a faster rate in group TLE than in groups FHE and FLE. Neither dietary energy concentration nor condition score at calving significantly affected milk composition (butterfat 43·5, protein 29·1, lactose 50·2 g/kg). Cows receiving compound HE consumed significantly (P < 0·001) more energy (208 MJ/day) than cows receiving compound LE (188 MJ/day). Over the first 10 weeks of lactation, changes in condition were –0·83, –0·88 +0·08 and –0·25 (s.e.d. 0·22, P < 0·05) condition score units for cows in groups FHE, FLE, THE and TLE respectively.It is concluded that with diets of high energy concentration intake is mainly limited by physiological mechanisms so that thin cows eat more than fat cows and produce similar amounts of milk. With diets of lower energy concentration, intake is limited by rumen capacity and thin cows eat the same as fat cows. This results in increased fat mobilization and a slight decrease in milk yield by cows which are fat at calving but the limited fat reserves of cows which are thin at calving are insufficient to compensate for reduced energy intake so large reductions in milk yield are observed.


Author(s):  
A Nagarjuna Reddy ◽  
Ch Venkata Seshiah ◽  
K Sudhakar ◽  
D Srinivasa Kumar ◽  
P. Ravi Kanth Reddy

The objective of the present study was to determine the effect of the duration of the dry period (DP) on milk yield, milk composition, and reproductive performance of Murrah buffaloes in the subsequent lactation. High yielding Murrah buffaloes (n=48) were assigned to either shortened (30 to 45 d (n=16); and 45 to 60 d (n=16)) or traditional (>60 days (n=16)) dry period lengths. The buffaloes were fed individually according to the production status. The buffaloes in >60, 45 and 30 d dry period groups had similar (P>0.05) milk yield, 6% Fat corrected milk (FCM), milk fat, and total solids; however, the former groups had an increased (P less then 0.05) 6% FCM yield change, and SNF percentage of milk. The mean service period (days) was least (P less then0.05) with the higher number of services required for conception in buffaloes allocated to traditional dry period length compared to those assigned to shortened dry periods. Further, 6% FCM had a negative correlation with Serum Glucose (SG) values at 30 d postpartum, followed by a significant positive (P less then 0.01) correlation at 60 or 90 d postpartum. It is concluded that extended DP of more than 60 days is not advantageous and would be a costly affair for the farmers in both productive and reproductive backdrop.


2014 ◽  
Vol 97 (3) ◽  
pp. 1499-1512 ◽  
Author(s):  
A.T.M. van Knegsel ◽  
G.J. Remmelink ◽  
S. Jorjong ◽  
V. Fievez ◽  
B. Kemp

2019 ◽  
Vol 15 (02) ◽  
pp. 39-41
Author(s):  
H H Panchasara ◽  
A B Chaudhari ◽  
D A Patel ◽  
Y M Gami ◽  
M P Patel

The study was conducted to evaluate the effect of feeding herbal galactogogue preparation (Sanjivani biokseera) on the milk yield and milk constituents in lactating Kankrej cows. Thirty-two lactating Kankrej cows in their 1st to 6th lactation were taken for the experiment from 3 days after calving up to 52 days postpartum. All the animals were fed as per the standard seasonally available roughages and concentrates to meet their nutritional requirements. The cows were randomly divided into two uniform groups of 16 cows in each according to initial milk yield and milk composition. The animals in group-I were not given any supplement and served as control. The animals in group-II were given Sanjivani biokseera (Naturewell Industries) @ 60 g per day for 1-month, commencing 3 days after calving, in addition to the usual feeds/fodders. A clear difference was observed in milk yield from day 8 onward of experiment between groups with significant (plessthan0 0.05) higher values from day 16-52 in cows fed herbal galactogogue as compared to control, but no such distinct effect on milk constituents was observed on day 52 when analyzed. The use of herbal galactogogue significantly (p lessthan 0.05) increased the overall average of 52 days milk production, which was 9.34 ± 0.21 lit/day in supplemented as compared to 7.75 ± 0.26 lit/day in control animals. It was concluded that herbal galactogogue (Sanjivani biokseera) could increase milk yield in lactating dairy cows through its galactopoetic property and improved rumen environment.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna C. Weigand ◽  
Roberto Kappes ◽  
...  

Crossbreeding in dairy cattle has been used to improve functional traits, milk composition, and efficiency of Holstein herds. The objective of the study was to compare indicators of the metabolic energy balance, nonesterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), glucose, body condition score (BCS) back fat thickness (BFT), as well as milk yield and milk composition of Holstein and Simmental cows, and their crosses from the prepartum period until the 100th day of lactation at the Livestock Center of the Ludwig Maximilians University (Munich, Germany). In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), first generation (F1) crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). The study took place between April 2018 and August 2019. BCS, BFT blood parameters, such as BHBA, glucose, and NEFA were recorded weekly. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect of cow was used. BCS increased with the Simmental proportion. All genetic groups lost BCS and BFT after calving. Simmental cows showed lower NEFA values. BHBA and glucose did not differ among genetic groups, but they differed depending on the week relative to calving. Simmental and R1-Sim cows showed a smaller effect than the other genetic groups regarding changes in body weight, BCS, or back fat thickness after a period of a negative energy balance after calving. There was no significant difference for milk yield among genetic groups, although Simmental cows showed a lower milk yield after the third week after calving. Generally, Simmental and R1-Simmental cows seemed to deal better with a negative energy balance after calving than purebred Holstein and the other crossbred lines. Based on a positive heterosis effect of 10.06% for energy corrected milk (ECM), the F1, however, was the most efficient crossbred line.


animal ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 100015
Author(s):  
T.V.C. Nascimento ◽  
R.L. Oliveira ◽  
D.R. Menezes ◽  
A.R.F. de Lucena ◽  
M.A.Á. Queiroz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document