Estimation of signal attenuation in the 60 GHZ band with an analog BiCMOS passive filter

2014 ◽  
Vol 7 (6) ◽  
pp. 645-653
Author(s):  
Johannes W. Lambrechts ◽  
Saurabh Sinha

Prediction of millimeter(mm)-wave radio signals can be beneficial in recreating and repeating atmospheric conditions in a controlled, laboratory environment. A path-loss model has been proposed that accounts for free-space losses, oxygen absorption, reflection and diffraction losses, and rain-rate attenuation at mm-wave frequencies. Two variable passive low-pass-integrated circuit filter structures for attenuation in the 57–64 GHz unlicensed frequency band have been proposed, designed, simulated, prototyped in a 130-nm SiGe bipolar complementary metal-oxide semiconductor process, and measured. The filters are based on the Butterworth and Chebyshev low-pass filter topologies and investigate the possibility of using the structures to perform amplitude attenuation of mm-wave frequencies over a short distance. Both filters are designed and matched for direct coupling with equivalent circuit models of dipole antennas operating in this frequency band. Full integration therefore allows prediction of atmospheric losses on an analog, real-time, basis without the requirement of down-converting (sampling) to analyze high-frequency signals through a digital architecture. On-wafer probe measurements were performed to limit parasitic interference from bonding wires and enclosed packaging.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5173 ◽  
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a fully integrated Gm–C low pass filter (LPF) based on a current steering Gm reduction-tuning technique, specifically designed to operate as the output stage of a SoC lock-in amplifier. To validate this proposal, a first-order and a second-order single-ended topology were integrated into a 1.8 V to 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) process, showing experimentally a tuneable cutoff frequency that spanned five orders of magnitude, from tens of mHz to kHz, with a constant current consumption (below 3 µA/pole), compact size (<0.0140 mm2/pole), and a dynamic range better than 70 dB. Compared to state-of-the-art solutions, the proposed approach exhibited very competitive performances while simultaneously fully satisfying the demanding requirements of on-chip portable measurement systems in terms of highly efficient area and power. This is of special relevance, taking into account the current trend towards multichannel instruments to process sensor arrays, as the total area and power consumption will be proportional to the number of channels.


Author(s):  
Noor Thamer Almalah ◽  
Faris Hasan Aldabbagh

<p>In this paper, a designed circuit used for low-frequency filters is implemented and realized the filter is based on frequency-dependent negative resistance (FDNR) as an inductor simulator to substitute the traditional inductance, which is heavy and high cost due to the coil material manufacturing and size area. The simulator is based on an active operation amplifier or operation transconductance amplifier (OTA) that is easy to build in an integrated circuit with a minimum number of components. The third and higher-order Butterworth filter is simulated at low frequency for low pass filter to use in medical instruments and low-frequency applications. The designed circuit is compared with the traditional proportional integral controller enhanced (PIE) and T section ordinary filter. The results with magnitude and phase response were compared and an acceptable result is obtained. The filter can be used for general applications such as medical and other low-frequency filters needed.</p>


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7343
Author(s):  
Montree Kumngern ◽  
Nattharinee Aupithak ◽  
Fabian Khateb ◽  
Tomasz Kulej

This paper presents a 0.5 V fifth-order Butterworth low-pass filter based on multiple-input operational transconductance amplifiers (OTA). The filter is designed for electrocardiogram (ECG) acquisition systems and operates in the subthreshold region with nano-watt power consumption. The used multiple-input technique simplifies the overall structure of the OTA and reduces the number of active elements needed to realize the filter. The filter was designed and simulated in the Cadence environment using a 0.18 µm Complementary Metal Oxide Semiconductor (CMOS) process from Taiwan Semiconductor Manufacturing Company (TSMC). Simulation results show that the filter has a bandwidth of 250 Hz, a power consumption of 34.65 nW, a dynamic range of 63.24 dB, attaining a figure-of-merit of 0.0191 pJ. The corner (process, voltage, temperature: PVT) and Monte Carlo (MC) analyses are included to prove the robustness of the filter.


10.14311/1424 ◽  
2011 ◽  
Vol 51 (5) ◽  
Author(s):  
M. Brejcha

This paper deals with the solution for a wideband low-pass filter that can be used for filtering the input currents of switching converters, which are distorted by the switching frequency of PWM. Initially, the filter was proposed for the special type of AC converter, which is described in the paper. However, these solutions can also be used in the inputs of active PFC converters and in the outputs of PWM converters, where there are similar problems with switching frequency.The frequency band of the filter is given by the switching frequency of the filtered device and by the demands of EMC standards. This makes the filter able to work in the frequency band from 10 kHz to 30 MHz. To ensure such a frequency band, the filter should be proposed with two sections, each for a specific part of the band.


2014 ◽  
Vol 926-930 ◽  
pp. 2893-2897
Author(s):  
Bin Bing Liu ◽  
Hai Qing Chen

In this paper, a multiple frequency band watermarking algorithm based on stripe image is proposed. The algorithm converts watermark string representing the copyright of image works to stripe image before embedding it to host image. Because of the error correction ability of the stripe image, the algorithm takes on high robustness. This paper also proposed a multiple frequency band embedding strategy through analyzing and classifying various watermark attacking algorithm. Applying this algorithm, watermark can stand several kinds of attacks such as low pass filter and high pass filter. Experimental results show that a blind watermarking algorithm with high robustness to various watermark attacking can be achieved through combining stripe image coding and multiple frequency band strategy.


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

2016 ◽  
Vol 15 (12) ◽  
pp. 2579-2586
Author(s):  
Adina Racasan ◽  
Calin Munteanu ◽  
Vasile Topa ◽  
Claudia Pacurar ◽  
Claudia Hebedean

Sign in / Sign up

Export Citation Format

Share Document