Evaluation of auxin tolerance in selected tomato germplasm under greenhouse and field conditions

2019 ◽  
Vol 33 (6) ◽  
pp. 815-822 ◽  
Author(s):  
Rouzbeh Zangoueinejad ◽  
Mohammad Taghi Alebrahim ◽  
Te Ming Tseng

AbstractTomato is injured by low doses of 2,4-D, dicamba, quinclorac, and glyphosate. New crop varieties resistant to 2,4-D and dicamba are likely to increase use of these herbicides and may increase drift problems. There is a diverse germplasm of tomato available that includes wild relatives known to be tolerant to numerous biotic and abiotic stresses. A greenhouse and field study was conducted to investigate auxin tolerance in three wild tomato accessions (TOM199, TOM198, and TOM300) and compare them with two commercial tomato cultivars (‘Money Maker’ and ‘Better Boy’). Auxin herbicides, which included 2,4-D, dicamba, and quinclorac, were applied at doses of 11, 3, and 39 g ae ha−1, respectively. Visible injury ratings of each accession for each herbicide treatment were recorded at 7, 14, 21, and 28 d after treatment (DAT) on a 0% to 100% scale. Results indicate that all three wild tomato accessions exhibited less than 15% injury compared with 100% injury for two commercial cultivars after application of dicamba. The three wild accessions (TOM199, TOM198, and TOM300) did not show any significant reduction in plant height compared with nontreated plants. At 28 DAT, plant heights of TOM199, TOM198, and TOM300 were 25, 25, and 28 cm when treated with dicamba and 31, 30, and 31 cm nontreated, respectively. Based on these results, the identified lines can serve as a genetic resource for developing herbicide-tolerant tomato, thus minimizing or eliminating the negative impacts of drift from nonlabeled herbicides tested in this project.

2021 ◽  
Author(s):  
Venera S. Kamburova ◽  
Ilkhom B. Salakhutdinov ◽  
Shukhrat E. Shermatov ◽  
Ibrokhim Y. Abdurakhmonov

The main task of plant breeding is creating of high-yield, resistant to biotic and abiotic stresses crop varieties with high product quality. The using of traditional breeding methods is limited by the duration of the new crop varieties creation with the required agronomic traits. This depends not only on the duration of growing season and reaching of mature stage of plants (especially the long-period growth plants, e.g. trees), as well as is associated with applying of multiple stages of crossing, selection and testing in breeding process. In addition, conventional methods of chemical and physical mutagenesis do not allow targeting effect to genome. However, the introduction of modern DNA-technology methods, such as genome editing, has opened in a new era in plant breeding. These methods allow to carry out precise and efficient targeted genome modifications, significantly reducing the time required to get plants with desirable features to create new crop varieties in perspective. This review provides the knowledge about application of genome editing methods to increase crop yields and product quality, as well as crop resistance to biotic and abiotic stresses. In addition, future prospects for integrating these technologies into crop breeding strategies are also discussed.


2020 ◽  
pp. 1-9
Author(s):  
Rouzbeh Zangoueinejad ◽  
Mohammad Taghi Alebrahim ◽  
Te-Ming Tseng

Herbicide tolerance is commonly associated with reduced absorption and translocation of the herbicide; we hypothesized that the mechanism of dicamba tolerance in wild tomato (Solanum lycopersicum L.) accessions is due to these characteristics. The absorption and translocation of dicamba were investigated at a drift rate of 2.8 g a.e. ha−1 in three predetermined dicamba-tolerant (DT) wild accessions (TOM199, TOM198, and TOM300) and compared with two dicamba-susceptible (DS) commercial tomato cultivars [Money Maker (MM) and Better Boy (BB)]. Dicamba was quantified in three different parts of the tomato plant: two upper leaves, two lower leaves, and the roots at 1, 3, and 7 d after treatment. Both MM and BB absorbed more dicamba then all the three DT accessions. The overall translocation pattern of dicamba was similar between DS cultivars and DT accessions, thus suggesting that tolerance to dicamba in wild accessions may not be associated with reduced translocation but instead with reduced uptake of the herbicide. Additionally, reduced dicamba absorption in DT accessions may be attributed to their leaf characteristics, such as the presence of narrower leaves (3.42 leaf length/width ratio) and higher trichome density (20 no. mm−2) in DT accessions, than compared with DS cultivars (1.92 leaf length/width ratio and 8 no. mm−2 trichome density).


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chin Jian Yang ◽  
Joanne Russell ◽  
Luke Ramsay ◽  
William Thomas ◽  
Wayne Powell ◽  
...  

AbstractDistinctness, Uniformity and Stability (DUS) is an intellectual property system introduced in 1961 by the International Union for the Protection of New Varieties of Plants (UPOV) for safeguarding the investment and rewarding innovation in developing new plant varieties. Despite the rapid advancement in our understanding of crop biology over the past 60 years, the DUS system has changed little and is still largely dependent upon a set of morphological traits for testing candidate varieties. As the demand for more plant varieties increases, the barriers to registration of new varieties become more acute and thus require urgent review to the system. To highlight the challenges and remedies in the current system, we evaluated a comprehensive panel of 805 UK barley varieties that span the entire history of DUS testing. Our findings reveal the system deficiencies such as inconsistencies in DUS traits across environments, limitations in DUS trait combinatorial space, and inadequacies in currently available DUS markers. We advocate the concept of genomic DUS and provide evidence for a shift towards a robust genomics-enabled registration system for new crop varieties.


2018 ◽  
Vol 10 (11) ◽  
pp. 3997 ◽  
Author(s):  
Nicholas Tyack ◽  
Milan Ščasný

The use of diverse genetic resources to breed improved crop varieties has been a key driver of agricultural productivity improvements in the past century. At the same time, the adoption of modern varieties has contributed to substantial loss of traditional varieties. In this analysis, we estimate the social value provided by several proposed crop diversity conservation programs to be carried out by the Czech genebank system. We use a double-bounded dichotomous choice model to estimate the willingness-to-pay (WTP) for conserving additional crop varieties in the genebank for ten years using data collected through an online contingent valuation survey administered to a sample representative of the general Czech population (1037 respondents) and a smaller sub-sample representative of the agricultural region of South Moravia (500 respondents). Mean WTP was found to be about $9 for both the Czech and S. Moravian sub-samples, corresponding to country-wide benefits of ~$68 million. These benefits increase by 6–7% for every ten varieties conserved, implying total welfare benefits of ~$84 million for a program conserving the maximum number of 35 additional crop varieties offered in the experiment. The study illustrates an empirical approach of potential value for policymakers responsible for determining funding levels for genetic resource conservation.


2021 ◽  
Author(s):  
Abdallah Bari ◽  
Hassan Ouabbou ◽  
abderrazek Jilal ◽  
Hamid Khazaei ◽  
Fred Stoddard ◽  
...  

Climate change poses serious challenges to achieving food security in a time of a need to produce more food to keep up with the worlds increasing demand for food. There is an urgent need to speed up the development of new high yielding varieties with traits of adaptation and mitigation to climate change. Mathematical approaches, including ML approaches, have been used to search for such traits, leading to unprecedented results as some of the traits, including heat traits that have been long sought-for, have been found within a short period of time.


2019 ◽  
Vol 33 (2) ◽  
pp. 321-328 ◽  
Author(s):  
John T. Buol ◽  
Daniel B. Reynolds ◽  
Darrin M. Dodds ◽  
J. Anthony Mills ◽  
Robert L. Nichols ◽  
...  

AbstractRecent commercialization of auxin herbicide–based weed control systems has led to increased off-target exposure of susceptible cotton cultivars to auxin herbicides. Off-target deposition of dilute concentrations of auxin herbicides can occur on cotton at any stage of growth. Field experiments were conducted at two locations in Mississippi from 2014 to 2016 to assess the response of cotton at various growth stages after exposure to a sublethal 2,4-D concentration of 8.3 g ae ha−1. Herbicide applications occurred weekly from 0 to 14 weeks after emergence (WAE). Cotton exposure to 2,4-D at 2 to 9 WAE resulted in up to 64% visible injury, whereas 2,4-D exposure 5 to 6 WAE resulted in machine-harvested yield reductions of 18% to 21%. Cotton maturity was delayed after exposure 2 to 10 WAE, and height was increased from exposure 6 to 9 WAE due to decreased fruit set after exposure. Total hand-harvested yield was reduced from 2,4-D exposure 3, 5 to 8, and 13 WAE. Growth stage at time of exposure influenced the distribution of yield by node and position. Yield on lower and inner fruiting sites generally decreased from exposure, and yield partitioned to vegetative or aborted positions and upper fruiting sites increased. Reductions in gin turnout, micronaire, fiber length, fiber-length uniformity, and fiber elongation were observed after exposure at certain growth stages, but the overall effects on fiber properties were small. These results indicate that cotton is most sensitive to low concentrations of 2,4-D during late vegetative and squaring growth stages.


1992 ◽  
Vol 32 (1) ◽  
pp. 65
Author(s):  
PS Brennan ◽  
DG Butler

Crosses between commercially acceptable varieties and introductions are most likely to generate segregation at many loci of commercial importance. The probability of recovery, after selfing, of individuals in which most of the favourable alleles have been accumulated is very low. Reducing the number of favourable alleles heterozygous in the breeding population would increase the probability of success. The utility of a single backcross (BC1) to the parent with the greatest number of favourable alleles was examined as a method of fixing commercially desirable alleles. The means for stability parameters for yield for BC1F2-derived populations were similar to those for F2-derived populations. The genetic variance for yield in 2 of the 3 crosses studied was greater for the BC1F2- than the F2-derived populations, while the genotype x environment interactions appeared to be smaller for the BC1F2 populations. This suggested that BC1F2-derived populations may be more productive, in terms of varietal production, than F2-derived populations, particularly in species with a long breeding history and/or a large number of desirable characteristics.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Lingfeng Mao ◽  
Meihong Chen ◽  
Qinjie Chu ◽  
Lei Jia ◽  
Most Humaira Sultana ◽  
...  

Abstract Rice (Oryza sativa L.) is one of the most important crops worldwide. Its relatives, including phylogenetically related species of rice and paddy weeds with a similar ecological niche, can provide crucial genetic resources (such as resistance to biotic and abiotic stresses and high photosynthetic efficiency) for rice research. Although many rice genomic databases have been constructed, a database providing large-scale curated genomic data from rice relatives and offering specific gene resources is still lacking. Here, we present RiceRelativesGD, a user-friendly genomic database of rice relatives. RiceRelativesGD integrates large-scale genomic resources from 2 cultivated rice and 11 rice relatives, including 208 321 specific genes and 13 643 genes related to photosynthesis and responsive to external stimuli. Diverse bioinformatics tools are embedded in the database, which allow users to search, visualize and download the information of interest. To our knowledge, this is the first genomic database providing a centralized genetic resource of rice relatives. RiceRelativesGD will serve as a significant and comprehensive knowledgebase for the rice community.


Sign in / Sign up

Export Citation Format

Share Document