Impact of Iron Formulations on Topramezone Injury to Bermudagrass

2020 ◽  
pp. 1-16
Author(s):  
Adam P. Boyd ◽  
J. Scott McElroy ◽  
David Y. Han ◽  
Elizabeth A. Guertal

Goosegrass control options in bermudagrass are limited. Topramezone is one option that offers excellent control of mature goosegrass, but application to bermudagrass results in unacceptable symptoms of bleaching and necrosis typical of HPPD inhibitors. Previous research has shown that adding chelated iron reduced the phytotoxicity of topramezone without reducing the efficacy of the herbicide resulting in safening when applied to bermudagrass. Our objective was to examine additional iron sources to determine if similar safening effects occur with other sources. Field trials were conducted in the summers of 2016 - 2018 (Auburn University). Mixtures of topramezone and MSO were combined with 6 different commercial iron sources, including FeEDDHA, FeDTPA, iron citrate, FeSO4, and a combination of iron oxide/sucrate/sulfate, some of which contained nitrogen. Bermudagrass necrosis and bleaching symptoms were visually rated on a 0 to 100% scale. Reflectance (NDVI) and clipping yield measurements were also collected. Application of FeDTPA and FeSO4 reduced symptoms of bleaching and necrosis when applied with topramezone. Other treatments which contained nitrogen did not reduce injury but did reduce bermudagrass recovery time following the appearance of necrosis. Inclusion of small amounts of nitrogen often negated the safening effects of FeSO4. The iron oxide/sucrate/sulfate product had no effect on bleaching or necrosis. Data suggests that iron source had a differential effect on bleaching and necrosis reduction when applied in combination with topramezone to bermudagrass. Overall, FeSO4 and FeDTPA safened the topramezone the most on bermudagrass.

2013 ◽  
Vol 27 (3) ◽  
pp. 492-496 ◽  
Author(s):  
Holly P. Byker ◽  
Nader Soltani ◽  
Darren E. Robinson ◽  
François J. Tardif ◽  
Mark B. Lawton ◽  
...  

Herbicide-resistant crops, such as glyphosate-resistant (GR) soybean, allow for broad-spectrum, flexible weed control with minimal crop injury; however, the development of GR weeds, such as horseweed, has forced reliance on alternative herbicides for control of these weeds. While preplant (PP) herbicides provide excellent control of GR-horseweed, there are currently no POST herbicide control options within soybean. The objective of this study was to evaluate the efficacy of dicamba for the control of GR-horseweed when applied PP, POST, and sequentially in dicamba-resistant soybean. Dicamba applied PP at 600 g a.e. ha−1provided 90 to 100% control of GR-horseweed 8 wk after application (WAA) across three field trials conducted in Ontario in 2011 and 2012. Similarly, sequential applications provided 91 to 100% control. This technology provides a much-needed POST option of dicamba to be applied as a rescue treatment to control weed escapes caused by late emergence or poor initial control following a PP herbicide application.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xue Yang ◽  
Chun-Yan Gu ◽  
Yang Bai ◽  
Jia-Zhi Sun ◽  
Hao-Yu Zang ◽  
...  

Pomegranate crown rot caused by Coniellagranati is one of the most severe diseases of pomegranate. To date, no fungicides have been registered for controlling this disease in China. Pyraclostrobin, belonging to strobilurin fungicides, has a broad spectrum of activity against many phytopathogens. In this study, based on the mycelial growth and conidial germination inhibition methods, we investigated the biological activity of pyraclostrobin against C. granati at the presence of 50 μg/mL SHAM using 80 isolates collected from different orchards in China during 2012-2018. The EC50 (50% effective concentration) values ranged from 0.040-0.613 μg/mL for mycelial growth and 0.013-0.110 μg/mL for conidium germination, respectively. Treated with pyraclostrobin, the hyphae morphology changed and conidial production of C. granati decreased significantly. The result of transmission electron microscope showed that treatment of pyraclostrobin could make the cell wall thinner, and lead to ruptured cell membrane and formation of intracellular organelle autophagosomes. The pyraclostrobin showed good protective and curative activities against C. granati on detached pomegranate fruits. In field trials, pyraclostrobin showed excellent control efficacy against this disease in which the treatment of 25% pyraclostrobin EC 1000× provided 92.25% and 92.58% control efficacy in 2019 and 2020, respectively, significantly higher than that of other treatments. Therefore, pyraclostrobin could be a candidate fungicide for the control of pomegranate crown rot.


1991 ◽  
Vol 31 (5) ◽  
pp. 705 ◽  
Author(s):  
DLS Wimalajeewa ◽  
R Cahill ◽  
G Hepworth ◽  
HG Schneider ◽  
JW Washbourne

Field trials were conducted during 1982-85, to develop a comprehensive spray program for the control of bacterial canker (Pseudomonas syringae pv, syringae) of apricot and cherry. Five spray schedules were evaluated as measures to reduce disease levels. Copper hydroxide at 2.5 g/L in water was applied to apricot, and bordeaux mixture at 6 g copper sulfate + 8 g hydrated lime/L in water was applied to cherry, during autumn, winter and pre-bloom spring. The effectiveness of copper sprays in reducing epiphytic populations of the pathogen during post-bloom spring was also tested. Copper hydroxide was applied to apricot, and a foliar copper nutrient and copper hydroxide were applied to cherry at low concentrations. Most spray schedules tested significantly (P<0.05) reduced canker incidence relative to controls. Excellent control of epiphytic populations of the pathogen on apricot and cherry was achieved with copper sprays applied at post-bloom in spring. A spray schedule consisting of 2 autumn, 1 winter and 2 pre-bloom spring sprays with copper hydroxide on apricot or bordeaux mixture on cherry was successful in reducing canker (>67% reduction) and is recommended for control of the disease. Two applications of copper hydroxide at 1.0 g/L in water in post-bloom spring considerably reduced (>9 1 %) epiphytic populations (P. syringae pv. syringae) on apricot and cherry leaves. Later sprays are recommended for use in combination with the autumn-winter-spring (pre-bloom) spray schedule, especially under excessively wet and cool weather conditions in spring.


2010 ◽  
Vol 90 (6) ◽  
pp. 933-938 ◽  
Author(s):  
N. Soltani ◽  
C. Shropshire ◽  
P.H. Sikkema

Nine field trials (five with PRE and four with POST herbicides) were conducted in 2006 to 2009 on various Ontario farms with heavy common cocklebur infestations to determine the effectiveness of PRE and POST herbicides for the control of common cocklebur in corn. There was no commercially significant corn injury from the PRE herbicides evaluated. Saflufenacil, saflufenacil/dimethenamid-p, isoxaflutole + atrazine, mesotrione + atrazine and dicamba/atrazine, applied PRE provided 85, 85, 76, 73 and 67% control of common cocklebur in corn 8 wk after emergence (WAE), respectively. Common cocklebur shoot dry weight was reduced 84, 80, 79, 75 and 68% with saflufenacil/dimethenamid-p, isoxaflutole + atrazine, mesotrione + atrazine, saflufenacil and dicamba/atrazine, respectively. There was no effect on corn yield compared with the weedy control with the PRE herbicides evaluated. The application of 2,4-D/atrazine POST resulted in unacceptable injury (28%) in corn. Dicamba/atrazine, dicamba/diflufenzopyr, dicamba and mesotrione + atrazine provided up to 98, 95, 90 and 90% control of common cocklebur 8 wk after application (WAA), respectively. All POST herbicide treatments increased corn yield compared with the non-treated control. Saflufenacil and saflufenacil/dimethenamid-p applied PRE and dicamba, dicamba/diflufenzopyr, dicamba/atrazine or mesotrione + atrazine applied POST have potential to provide good to excellent control of common cocklebur in corn under Ontario environmental conditions.


Weed Science ◽  
1978 ◽  
Vol 26 (4) ◽  
pp. 313-317 ◽  
Author(s):  
G. L. Jordan ◽  
R. G. Harvey

The relative effectiveness of eight acetanilide herbicides for controlling annual weeds in processing peas(Pisum sativumL.) was evaluated in field studies and the susceptibility of peas to injury from these herbicides was studied in both the field and greenhouse. Alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] was the most phytotoxic to peas grown in washed silica sand in the greenhouse when the herbicides were applied at concentrations of 2 and 8 mg/L. Field trials conducted over a 2-yr period and simulated rainfall experiments in the greenhouse demonstrated that the phytotoxicity to peas by acetanilide herbicides applied preemergence at 2.2 and 4.5 kg/ha was greatly influenced by subsequent rainfall. When 2.5 cm of simulated rainfall were applied immediately after herbicide application, pea injury increased. Injury to peas was avoided in the field by delaying alachlor application at 2.2 kg/ha until peas began to emerge. This treatment also gave excellent control of annual grass weeds. Greenhouse studies demonstrated that injury to peas by all eight acetanilide herbicides at 2.2 and 4.5 kg/ha could be avoided by delaying application until pea emergence. Alachlor, propachlor (2-chloro-N-isopropylacetanilide), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] gave slightly superior weed control than butachlor [N-(butoxymethyl)diethylacetanilide] and H 22234 [N-chloroacetyl-N-(2,6-diethylphenyl)-glycine ethyl ester].


Author(s):  
Kerstin Lüdtke-Buzug ◽  
Julian Haegele ◽  
Sven Biederer ◽  
Timo F. Sattel ◽  
Marlitt Erbe ◽  
...  

1989 ◽  
Vol 39 (2) ◽  
pp. 220-223 ◽  
Author(s):  
Tomás Pérez Ruiz ◽  
Manuel Hernández Córdoba ◽  
Roque Ortiz-González

HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1492-1494 ◽  
Author(s):  
Darren E. Robinson ◽  
Kristen McNaughton ◽  
Nader Soltani

Pepper growers currently have limited access to many effective broadleaf herbicides. Field trials were conducted over a 3-year period in Ontario to study the effect of tank mixtures of sulfentrazone (100 or 200 g·ha−1 a.i.) with either s-metolachlor (1200 or 2400 g·ha−1 a.i.) or dimethenamid-p (750 or 1500 g·ha−1 a.i.) on transplanted bell pepper. Under weed-free conditions, there was no visual injury or reduction in plant height, fruit number, fruit size, or marketable yield of transplanted pepper with pretransplant applications of sulfentrazone applied in tank mixtures with s-metolachlor or dimethenamid-p. The tank mixture of sulfentrazone + s-metolachlor gave greater than 85% control of redroot pigweed (Amaranthus retroflexus) and eastern black nightshade (Solanum ptycanthum), but only 70% to 76% control of velvetleaf (Abutilon theophrasti), common ragweed (Ambrosia artemisiifolia), and common lambsquarters (Chenopodium album). The combination of sulfentrazone + dimethenamid-p provided good to excellent control of all weed species except velvetleaf. Based on this study, sulfentrazone and dimethenamid-p have potential for minor use registration in pepper.


1990 ◽  
Vol 4 (3) ◽  
pp. 620-624 ◽  
Author(s):  
B. Clifford Gerwick ◽  
Lisa D. Tanguay ◽  
Frank G. Burroughs

The effect of urea ammonium nitrate (UAN) on the antagonism of sethoxydim, haloxyfop, or the methyl ester of haloxyfop activity by bentazon was evaluated in greenhouse and field trials on yellow and giant foxtail. Including UAN in the spray solution in the absence of bentazon did not enhance the activity of any of the three grass herbicides. However, adding UAN to sethoxydim or haloxyfop in the presence of bentazon decreased the bentazon antagonism of grass activity. Conversely, UAN increased bentazon antagonism of the activity of haloxyfop methyl ester. The differential effect of UAN was not linked to effects on spray solution pH.


Sign in / Sign up

Export Citation Format

Share Document