Rush skeletonweed (Chondrilla juncea L.) control in fallow

2021 ◽  
pp. 1-22
Author(s):  
Mark E. Thorne ◽  
Drew J. Lyon

Rush skeletonweed is an invasive weed in winter wheat (WW)/summer fallow (SF) rotations of the low to intermediate rainfall areas of the inland Pacific Northwest. Standard weed control practices are not effective, resulting in additional SF tillage or herbicide applications. The objective of this field research was to identify herbicide treatments that control rush skeletonweed during the SF phase of the WW/SF rotation. Trials were conducted near LaCrosse, WA in 2017-2019 and 2018-2020, and near Hay, WA in 2018-2020. The LaCrosse 2017-2020 trial was in tilled SF; the other two trials were in no-till SF. Fall post-harvest applications in October included clopyralid, clopyralid plus 2,4-D, clopyralid plus 2,4-D plus chlorsulfuron plus metsulfuron, aminopyralid, picloram, and glyphosate plus 2,4-D. Spring treatments of clopyralid, aminopyralid, and glyphosate were applied to rush skeletonweed rosettes. Summer treatments of 2,4-D were applied when rush skeletonweed initiated bolting. Plant density was monitored through the SF phase in all plots. Picloram provided complete control of rush skeletonweed through June at all three locations. Fall-applied clopyralid, clopyralid plus 2,4-D, and clopyralid followed by 2,4-D in summer reduced rush skeletonweed through June at the two LaCrosse sites but were ineffective at Hay. In August, just prior to winter wheat seeding, the greatest reductions in rush skeletonweed density were achieved with picloram and fall-applied clopyralid at the two LaCrosse sites. No treatments provided effective control into August at Hay. Wheat yield in the next crop compared to the nontreated control was reduced only at one LaCrosse site by a spring-applied aminopyralid treatment, otherwise no other reductions were found. Long-term control of rush skeletonweed in WW/SF may be achieved by a combination of fall application of picloram, after wheat harvest, followed by an effective burn-down treatment in August prior to winter wheat seeding.

2007 ◽  
Vol 21 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Chad S. Trusler ◽  
Thomas F. Peeper ◽  
Amanda E. Stone

An experiment was conducted at three sites in central Oklahoma to compare the efficacy of Italian ryegrass management options in no-till (NT) and conventional tillage (CT) winter wheat. The Italian ryegrass management options included selected herbicide treatments, wheat-for-hay, and a rotation consisting of double-crop soybean seeded immediately after wheat harvest, followed by early season soybean, and then by wheat. In continuous wheat, before application of glyphosate or tillage, Italian ryegrass plant densities in mid-September were 12,300 to 15,000 plants/m2in NT plots vs. 0 to 500 plants/m2in CT plots. When applied POST, diclofop controlled more Italian ryegrass than tralkoxydim or sulfosulfuron. In continuous wheat, yields were greater in CT plots than in NT plots at two of three sites. None of the Italian ryegrass management options consistently reduced Italian ryegrass density in the following wheat crop. Of the Italian ryegrass control strategies applied to continuous wheat, three herbicide treatments in NT at Chickasha and all treatments in NT at Perry reduced Italian ryegrass density in the following wheat crop. Italian ryegrass plant density in November and spike density were highly related to wheat yield at two and three sites, respectively. No management options were more profitable than rotation to soybean.


2003 ◽  
Vol 95 (4) ◽  
pp. 828-835 ◽  
Author(s):  
K. M. Camara ◽  
W. A. Payne ◽  
P. E. Rasmussen

2020 ◽  
Vol 158 (1-2) ◽  
pp. 65-79
Author(s):  
J. Macholdt ◽  
H.-P. Piepho ◽  
B. Honermeier ◽  
S. Perryman ◽  
A. Macdonald ◽  
...  

AbstractThe development of resilient cropping systems with high yield stability is becoming increasingly important due to future climatic and agronomic challenges. Consequently, it is essential to compare the effects of different agronomic management practices, such as cropping sequences and nutrient supply, on the stability of crop yields. Long-term experiments are a valuable resource for investigating these effects, as they provide enough time to accurately estimate stability parameters. The objective of the current study was to compare the effects of different cropping sequencing (#1: continuous v. rotational), fertilization (#2: mineral v. organic) and straw management techniques (in the case of continuous wheat; #3: removal v. incorporation) on the yield stability of winter wheat; yield risk (the probability of yield falling below a threshold yield level) and inter-annual yield variability were used as stability indicators of the effects. Long-term yield data from the Broadbalk Wheat Experiment (Rothamsted, UK) were analysed using a mixed model. Overall, the results showed that rotational cropping combined with sufficient mineral N fertilizer, with or without organic manure, ensured stable wheat yields while reducing yield risk. In contrast, higher yield risks and inter-annual yield variabilities were found in continuous wheat sections with less mineral N fertilizer or with organic manure only.


2010 ◽  
Vol 56 (No. 1) ◽  
pp. 28-36 ◽  
Author(s):  
J. Černý ◽  
J. Balík ◽  
M. Kulhánek ◽  
K. Čásová K ◽  
V. Nedvěd

In long-term stationary experiments under different soil-climatic conditions, an influence of mineral and organic fertilization on yield of winter wheat, spring barley and potato tubers was evaluated. Statistically significantly lowest grain yields of winter wheat (4.00 t/ha) and spring barley (2.81 t/ha) were obtained in non-fertilized plots at all experimental sites. In the case of potatoes, the lowest yield of dry matter (5.71 t/ha) was recorded in the control plot, but the result was not statistically significant. The manure-fertilized plot gave the average yield of wheat higher by 30%, of barley by 22%. Application of sewage sludge resulted in wheat yield higher by 41% and barley yield higher by 26% over control. On average, application of sewage sludge and manure increased the yield of potatoes by 30% over control. The highest yield was obtained after application of mineral fertilizers; average yield increased by 59, 50 and 36% in winter wheat, spring barley and potatoes, respectively. No statistically significant differences among the plots with mineral fertilizers were observed. At different sites, the yield of studied crops varied; however, the effect of fertilization on yield increments was similar at all experimental sites except for Lukavec. It is the site with the lowest natural soil fertility, and it showed the highest effect of the applied fertilizers.


10.12737/3823 ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. 117-121
Author(s):  
Шаронова ◽  
Natalya Sharonova ◽  
Яппаров ◽  
Akhtam Yapparov ◽  
Ильясов ◽  
...  

The article presents data of field research of fertilizers systems and tillage on heavy leached chernozem at planting winter wheat in the Republic of Tatarstan. The paper shows the positive effects of organomineral fertilizer system on crop growth and quality of winter wheat, compared with mineral fertilizer system. The improvement of water and soil nutrient status was revealed. The layered and chisel tillage systems were the most effective methods. The study showed, that the use of organomineral fertilizer system had a stronger positive impact on the yield and quality of winter wheat, compared with mineral fertilizer system. The most winter wheat yield was obtained by applying the organomineral fertilizer system at layered plowing - 4.49 tons per hectare (the increase relative to the control is 0.64 tons per hectare). The best indicators of water and food regime of leached chernozem also marked at using organomineral fertilizer system, especially in layered tillage .


2020 ◽  
Vol 10 (5) ◽  
pp. 287-290
Author(s):  
H.M. Kovalyshyna ◽  
Yu.M. Dmytrenko ◽  
A.O. Butenko

The results of long-term field research on the search for resistant varieties of bread winter wheat, created at the V. M. Remeslo Myronivka institute of wheat, to major leaf diseases are presented. Researches were performed under conditions of artificial inoculation by pathogens in field infectious nurseries. Varieties with resistance to brown rust have been identified: Kolumbiia, Remeslivna, Pereiaslavka, Bohdana, Monotyp, Khazarka, Pam'iati Remesla, Yasnohirka, Dostatok, Svitanok Myronivs`kyi, Berehynia Myronivs`ka, Horlytsia myronivs`ka, Trudivnytsia Myronivs`ka, MIP Kniazhna, MIP Vyshyvanka. Powdery mildew: Kolumbiia, Remeslivna, Snizhana, Pereiaslavka, Favorytka, Bohdana, Khazarka, Monotyp, Pam'iati Remesla, Voloshkova, Yasnohirka, Lehenda Myronivs`ka, Svitanok Myronivs`kyi, Oberih Myronivs`kyi, Berehynia Myronivs`ka, Horlytsia Myronivs`ka, Hospodynia Myronivs`ka, MIP Valensiia, Trudivnytsia Myronivs`ka, MIP Kniazhna, MIP Vyshyvanka. Common bunt: Kolumbiia, Snizhana, Pereiaslavka, Favorytka, Volodarka, Bohdana, Pyvna, Madiarka, Yuviliar Myronivs`kyi, Myronivs`ka storichna, Yasnohirka, Dostatok, Lehenda Myronivs`ka, Oberih Myronivs`kyi, Berehynia Myronivs`ka, Horlytsia Myronivs`ka, MIP Kniazhna and MIP Vyshyvanka. As well varieties with group resistance to leaf diseases: Kolumbiia, Smuhlianka, Snizhana, Pereiaslavka, Volodarka, Favorytka, Bohdana, Zolotokolosa, Khazarka, Monotyp, Madiarka, Pam'iati Remesla, Lehenda Myronivs`ka, Svitanok Myronivs`kyi, Berehynia Myronivs`ka, MIP Vyshyvanka and varieties MIP Dniprianka, Estafeta Myronivs`ka, Vezha Myronivs`ka.


2011 ◽  
Vol 101 (5) ◽  
pp. 544-554 ◽  
Author(s):  
D. Sharma-Poudyal ◽  
X. M. Chen

Climatic variation in the U.S. Pacific Northwest (PNW) affects epidemics of wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Previous models only estimated disease severity at the flowering stage, which may not predict the actual yield loss. To identify weather factors correlated to stripe rust epidemics and develop models for predicting potential yield loss, correlation and regression analyses were conducted using weather parameters and historical yield loss data from 1993 to 2007 for winter wheat and 1995 to 2007 for spring wheat. Among 1,376 weather variables, 54 were correlated to yield loss of winter wheat and 18 to yield loss of spring wheat. Among the seasons, winter temperature variables were more highly correlated to wheat yield loss than the other seasons. The sum of daily temperatures and accumulated negative degree days of February were more highly correlated to winter wheat yield loss than the other monthly winter variables. In addition, the number of winter rainfall days was found correlated with yield loss. Six yield loss models were selected for each of winter and spring wheats based on their better correlation coefficients, time of weather data availability during the crop season, and better performance in validation tests. Compared with previous models, the new system of using a series of the selected models has advantages that should make it more suitable for forecasting and managing stripe rust in the major wheat growing areas in the U.S. PNW, where the weather conditions have become more favorable to stripe rust.


2008 ◽  
Vol 22 (3) ◽  
pp. 435-441 ◽  
Author(s):  
Eric D. Jemmett ◽  
Donald C. Thill ◽  
Traci A. Rauch ◽  
Daniel A. Ball ◽  
Sandra M. Frost ◽  
...  

Rattail fescue infestations are increasing in dryland conservation-tillage winter wheat cropping systems in the inland Pacific Northwest (PNW) region of Idaho, Oregon, and Washington. Rattail fescue typically is controlled with cultivation in conventional tillage farming systems. However, reduced soil disturbance has allowed infestations to increase significantly. The objectives of this research were to determine the effectiveness of glyphosate rates and application timings on control of rattail fescue during a chemical-fallow period in winter wheat cropping systems. Chemical-fallow field studies were conducted during two growing seasons at nine sites throughout the PNW. Glyphosate was applied early POST, late POST, or sequentially in early plus late POST timings. Additionally, paraquat + diuron was applied early and late POST alone or sequentially with glyphosate. Sequential application treatments (glyphosate followed by [fb] glyphosate, paraquat + diuron fb glyphosate, and glyphosate fb paraquat + diuron) controlled rattail fescue (∼ 94% in Idaho and Washington, ∼ 74% in Oregon) and reduced panicle number (∼ 85% in Idaho, ∼ 30% in Oregon and Washington) equivalent to or greater than one-time treatments. Rattail fescue control and panicle reduction generally increased with increasing rates of glyphosate within application timings. Paraquat + diuron usually provided similar control and reduced rattail fescue panicle number compared to glyphosate treatments applied at the same application timing. Although not completely effective, sequential applications of either glyphosate or paraquat + diuron, fb glyphosate will provide effective control during chemical fallow.


2010 ◽  
Vol 59 (1) ◽  
pp. 135-144 ◽  
Author(s):  
E. Bertáné Szabó ◽  
J. Loch ◽  
Gy. Zsigrai ◽  
L. Blaskó

The effects of regular NPK fertilization on the amounts of winter wheat yield and the amounts and proportion of different N forms (NO 3 -N, NH 4 -N, N org , N total ) of a Luvic Phaeosem soil determined in 0.01 M CaCl 2 were studied in the B1740 variant of the National Long-Term Fertilization Experiment at Karcag. According to the yield data, N and P fertilization increased winter wheat yield significantly. When applying the 200 kg N·ha -1 dose, P fertilization resulted in a more than 2 t·ha -1 yield increase, as compared to the treatments without P fertilization. K fertilization had no effect on the yield, similarly to preceding years. These findings may be adapted to fields of the Middle-Tisza Region with similar conditions to the trial site. The N forms of the soil determined in CaCl 2 reflected fertilization well. All of the fractions, but especially NO 3 -N and N total , increased significantly in response to N fertilization. Close relationships (r = 0.87–0.88) were found among the NO 3 -N and N total fractions and the N balance, which means that the amounts of NO 3 -N and N total are suitable for assessing both the N deficit and the N surplus. The strength of the correlation between the NH 4 -N content and N balance was moderate (r = 0.65). The N org fraction increased significantly as a function of N and P fertilization. These results can be explained with the yield increase. A significant correlation (r = 0.55) was found between the N org fraction and yield amounts. It can be established that organic residuals remaining on the site resulted in a significant increase in the N org content of soils. The gained results confirm that the N org fraction is suitable for the characterization of the readily mobilizable N reserves previously ignored in fertilization practice. On the basis of the presented results the CaCl 2 method is recommended for the precise estimation of nutrient requirements.


Sign in / Sign up

Export Citation Format

Share Document