An Improved Method to Shorten Physiological Dormancy of Giant Ragweed (Ambrosia trifida) Seed

Weed Science ◽  
2019 ◽  
Vol 67 (2) ◽  
pp. 205-213
Author(s):  
Nick T. Harre ◽  
Stephen C. Weller ◽  
Bryan G. Young

AbstractTimely results from whole-plant, herbicide-resistant weed screenings are crucial to heighten grower awareness. However, the high degree of physiological dormancy of giant ragweed (Ambrosia trifidaL.) seed exacerbates this process. The most effective methods for alleviating dormancy, to date, are either labor-intensive (embryo excision) or require several weeks (soil stratification). This research describes a conditioning process involving clipping and aeration of seed in water that is highly effective at alleviating dormancy and requires less skill and time compared with previous techniques.Ambrosia trifidaseeds were collected over 2 yr at two different collection timings (September 25, “early”; October 25, “late”), subjected to various treatments intended to release dormancy, and evaluated for emergence over 18 d in the greenhouse. The use of germination-promoting chemicals (ethephon, gibberellic acid, and thiourea) generally provided no increase in emergence compared with water and occasionally produced seedlings with abnormal growth unsuitable for further experimentation. Conditioning yielded between 30% and 33% emergence for both early and late collections of seeds with no afterripening period compared with 0% emergence for seeds imbibed in water. Following an 8-wk period of dry storage at 4 C, conditioning yielded nearly 80% emergence for both collection timings, while emergence of seeds imbibed in water was 10% and 27% for early and late collections, respectively. Soil stratification in moist soil for 8 wk at 4 C was the second most effective treatment, yielding 46% to 49% emergence across both collections. Parameters of the Weibull function further indicated the conditioning treatment had the fastest rate of emergence and shortest lag phase between planting and first emergence. Methods to germinateA. trifidawithout an afterripening period have previously been unsuccessful. Therefore, the seed-conditioning method outlined in this work will be useful in expediting the confirmation of herbicide-resistantA. trifidaincidences.

2013 ◽  
Vol 27 (3) ◽  
pp. 454-458 ◽  
Author(s):  
Kelly A. Barnett ◽  
Thomas C. Mueller ◽  
Lawrence E. Steckel

The development of crops resistant to 2,4-D, dicamba, and glufosinate may provide new options for the management of glyphosate-resistant (GR) giant ragweed and other herbicide-resistant weeds. A fallow field study was conducted in 2011 and 2012 to determine the control of GR giant ragweed with 2,4-D and dicamba applied alone and in combination with glufosinate or fomesafen. Dicamba and 2,4-D tank-mixed with glufosinate or fomesafen provided the highest level of control at 10 or 20 days after application (DAA). At 30 DAA, all herbicide treatments provided > 88% control of giant ragweed except glyphosate, glufosinate, and 2,4-D alone at 0.56 kg ae ha−1. Glyphosate, glufosinate, and 2,4-D alone at 0.56 kg ae ha−1also had the highest number of giant ragweed plants (> 5.8 plants m−2) and highest biomass (> 19.2 g m−2). Contrast statements between 2,4-D and dicamba indicated no differences among treatments containing these herbicides. However, contrast analysis indicated that herbicides applied alone resulted in 56, 58, and 61% control while tank-mix combinations of 2,4-D or dicamba with glufosinate or fomesafen resulted in 86, 91, and 93% control, respectively. Herbicides applied alone also had more giant ragweed plants and biomass per m−2than herbicides applied in tank-mix combinations. Tank-mixing combinations of 2,4-D and dicamba will be important for effective control of GR giant ragweed.


2012 ◽  
Vol 26 (3) ◽  
pp. 422-428 ◽  
Author(s):  
Joseph P. Vink ◽  
Nader Soltani ◽  
Darren E. Robinson ◽  
François J. Tardif ◽  
Mark B. Lawton ◽  
...  

Glyphosate-resistant (GR) giant ragweed has been confirmed in Ontario, Canada. Giant ragweed is an extremely competitive weed and lack of control in soybean will lead to significant yield losses. Seed companies have developed new herbicide-resistant (HR) crop cultivars and hybrids that stack multiple HR traits. The objective of this research was to evaluate the efficacy of glyphosate and glyphosate plus dicamba tank mixes for the control of GR giant ragweed under Ontario environmental conditions in dicamba-tolerant (DT) soybean. Three field trials were established over a 2-yr period (2010 and 2011) on farms near Windsor and Belle River, ON. Treatments included glyphosate (900 g ae ha−1), dicamba (300 g ae ha−1), and dicamba (600 g ha−1) applied preplant (PP), POST, or sequentially in various combinations. Glyphosate applied PP, POST, or sequentially provided 22 to 68%, 40 to 47%, and 59 to 95% control of GR giant ragweed and reduced shoot dry weight 26 to 80%, 16 to 50%, and 72 to 98%, respectively. Glyphosate plus dicamba applied PP followed by glyphosate plus dicamba applied POST consistently provided 100% control of GR giant ragweed. DT soybean yield correlated with GR giant ragweed control. This is the first report in Canada of weed control in DT soybean, specifically for the control of GR giant ragweed. Results indicate that the use of dicamba in DT soybean will provide an effective option for the control of GR giant ragweed in Ontario.


2020 ◽  
pp. 1-15
Author(s):  
Amit J. Jhala ◽  
Jason K. Norsworthy ◽  
Zahoor A. Ganie ◽  
Lynn M. Sosnoskie ◽  
Hugh J. Beckie ◽  
...  

Abstract Pollen-mediated gene flow (PMGF) refers to the transfer of genetic information (alleles) from one plant to another compatible plant. With the evolution of herbicide-resistant (HR) weeds, PMGF plays an important role in the transfer of resistance alleles from HR to susceptible weeds; however, little attention is given to this topic. The objective of this work was to review reproductive biology, PMGF studies, and interspecific hybridization, as well as potential for herbicide resistance alleles to transfer in the economically important broadleaf weeds including common lambsquarters, giant ragweed, horseweed, kochia, Palmer amaranth, and waterhemp. The PMGF studies involving these species reveal that transfer of herbicide resistance alleles routinely occurs under field conditions and is influenced by several factors, such as reproductive biology, environment, and production practices. Interspecific hybridization studies within Amaranthus and Ambrosia spp. show that herbicide resistance allele transfer is possible between species of the same genus but at relatively low levels. The widespread occurrence of HR weed populations and high genetic diversity is at least partly due to PMGF, particularly in dioecious species such as Palmer amaranth and waterhemp compared with monoecious species such as common lambsquarters and horseweed. Prolific pollen production in giant ragweed contributes to PMGF. Kochia, a wind-pollinated species can efficiently disseminate herbicide resistance alleles via both PMGF and tumbleweed seed dispersal, resulting in widespread occurrence of multiple HR kochia populations. The findings from this review verify that intra- and interspecific gene flow can occur and, even at a low rate, could contribute to the rapid spread of herbicide resistance alleles. More research is needed to determine the role of PMGF in transferring multiple herbicide resistance alleles at the landscape level.


Author(s):  
O. Marieva ◽  
O. Zhuiboroda

The expansion of trade and economic relations with other countries increased the risk of importing new invasive types of weeds into the state. One of them is a serious danger weed — giant ragweed (Ambrosia trifida L.). This weed with high speed and aggressiveness inhabits and displacing native species in agricultural and non-arable land, including landscapes of big cities. A. trifida extends to non-arable lands with disturbed natural vegetation. This species is spreading through the contamination of seeds and agricultural equipment. It damaged soybeans, legumes and corn, as well as other grain crops. Increasing of this weed pollen in the air is a source of a massive disease with allergies. At present, there is danger of entry by this weed to Ukraine from neighboring countries.


2012 ◽  
Vol 03 (05) ◽  
pp. 608-617 ◽  
Author(s):  
Joseph P. Vink ◽  
Nader Soltani ◽  
Darren E. Robinson ◽  
François J. Tardif ◽  
Mark B. Lawton ◽  
...  

2020 ◽  
Vol 34 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Jessica Quinn ◽  
Nader Soltani ◽  
Jamshid Ashigh ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractHorseweed is a competitive summer or winter annual weed that produces up to 230,000 small seeds per plant that are capable of traveling more than 500 km via wind. Giant ragweed is a tall, highly competitive summer annual weed. Glyphosate-resistant (GR) horseweed and GR giant ragweed pose significant challenges for producers in the United States and Ontario, Canada. It is thought that an integrated weed management (IWM) system involving herbicide rotation is required to control GR biotypes. Halauxifen-methyl is a new selective broadleaf POST herbicide registered for use in cereal crops; there is limited information on its efficacy on horseweed and giant ragweed. The purpose of this research was to determine the efficacy of halauxifen-methyl applied POST, alone and in a tank mix, for the control of GR horseweed and GR giant ragweed in wheat across southwestern Ontario. For each weed species, an efficacy study consisting of six field experiments was conducted over a 2-yr period (2018, 2019). At 8 wk after application (WAA), halauxifen-methyl, fluroxypyr/halauxifen-methyl, fluroxypyr/halauxifen-methyl + MCPA EHE, fluroxypyr + MCPA ester, 2,4-D ester, clopyralid, and pyrasulfotole/bromoxynil + ammonium sulfate controlled GR horseweed >95%. Fluroxypyr and MCPA provided only 86% and 37% control of GR horseweed, respectively. At 8 WAA, fluroxypyr, fluroxypyr/halauxifen-methyl, fluroxypyr/halauxifen-methyl + MCPA EHE, fluroxypyr + MCPA ester, fluroxypyr/halauxifen-methyl + MCPA EHE + pyroxsulam, 2,4-D ester, clopyralid, and thifensulfuron/tribenuron + fluroxypyr + MCPA ester controlled GR giant ragweed 87%, 88%, 90%, 94%, 96%, 96%, 98%, and 93%, respectively. Halauxifen-methyl and pyroxsulam provided only 45% and 28% control of GR giant ragweed, respectively. Halauxifen-methyl applied alone POST in the spring controlled GR horseweed but not GR giant ragweed in winter wheat.


2006 ◽  
Vol 20 (1) ◽  
pp. 172-178 ◽  
Author(s):  
Karen A. Zuver ◽  
Mark L. Bernards ◽  
James J. Kells ◽  
Christy L. Sprague ◽  
Case R. Medlin ◽  
...  

Herbicide-resistant corn hybrids offer additional options for POST weed control in corn, and growers may benefit from information on the consistency of these weed-control strategies. Studies were conducted in Indiana, Illinois, Michigan, and Ohio, in 2000 and 2001, to evaluate weed control among herbicide strategies for imidazolinone-resistant, glufosinate-resistant, glyphosate-resistant, and conventional corn. Isogenic hybrids were utilized to minimize variation in growth and yield potential among hybrids. The glyphosate-resistant corn postemergence (glyphosate-POST) treatment provided more consistent control of giant foxtail than the PRE, conventional corn postemergence (conventional-POST), glufosinate-resistant corn postemergence (glufosinate-POST), and imidazolinone-resistant corn postemergence (imi-POST) treatments. All four POST treatments were more consistent and provided greater control than the PRE treatment of the large-seeded broadleaf weeds velvetleaf, giant ragweed, common cocklebur, and morningglory species. Conventional-POST and imi-POST were more consistent than glufosinate-POST and glyphosate-POST treatments in controlling giant ragweed. There were no statistical differences in the variability of PRE or POST treatments for control of common lambsquarters, common ragweed, and redroot pigweed. Corn yield varied among locations and years. The glyphosate-POST treatment did not reduce yield relative to the weed-free treatment, the imi-POST and glufosinate-POST treatments each reduced yield in one of eight locations, and the conventional-POST treatment reduced yield in three of eight locations.


Sign in / Sign up

Export Citation Format

Share Document