The response of glyphosate-resistant and glyphosate-susceptible biotypes of junglerice (Echinochloa colona) to mungbean interference

Weed Science ◽  
2019 ◽  
Vol 67 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Navneet Kaur Mutti ◽  
Gulshan Mahajan ◽  
Prashant Jha ◽  
Bhagirath S. Chauhan

AbstractGlyphosate-resistant junglerice [Echinochloa colona (L.) Link] is a problematic weed in mungbean [Vigna radiata (L.) R. Wilczek] crops in Australia. Due to limited herbicide options in mungbean, there is an increased interest in developing integrated management strategies for the sustainable control of E. colona. Pot experiments were conducted in a screenhouse in 2017 and 2018 by growing E. colona plants (glyphosate-resistant [GR] and glyphosate-susceptible [GS] biotypes) alone (1 plant pot−1) and in competition with 4 and 8 mungbean plants pot−1. Both biotypes were developed from a single population using the clone method. The growth and seed production of both GR and GS biotypes were similar in response to mungbean competition. Averaged over biotypes, there was a reduction in the growth and seed production of E. colona as crop plants increased. Compared with the weed plants grown alone, crop interference reduced E. colona height by 17% to 19%, tiller numbers by 69% to 82%, total shoot biomass by 85% to 91%, and inflorescence numbers by 74% to 91%. When E. colona was grown with 8 mungbean plants pot−1, leaf weight ratio increased by 42% compared with plants grown alone. Compared with weed plants grown alone, mungbean interference (4 and 8 plants pot−1) reduced weed seed production by 85% to 95%. These reductions were similar for both biotypes (GR and GS), suggesting that there was no fitness penalty associated with resistance. The results of this study suggest that mungbean interference can reduce E. colona growth and seed production, but it should not be considered as a stand-alone strategy to manage E. colona and similar species in mungbean. These results also highlight the need for integrating crop competition with other management strategies to achieve complete and sustainable management of this weed.

Weed Science ◽  
2019 ◽  
pp. 1-7
Author(s):  
Navneet Kaur Mutti ◽  
Gulshan Mahajan ◽  
Prashant Jha ◽  
Bhagirath S. Chauhan

AbstractGlyphosate-resistant junglerice [Echinochloa colona(L.) Link] is a problematic weed in mungbean [Vigna radiata(L.) R. Wilczek] crops in Australia. Due to limited herbicide options in mungbean, there is an increased interest in developing integrated management strategies for the sustainable control ofE. colona. Pot experiments were conducted in a screenhouse in 2017 and 2018 by growingE. colonaplants (glyphosate-resistant [GR] and glyphosate-susceptible [GS] biotypes) alone (1 plant pot−1) and in competition with 4 and 8 mungbean plants pot−1. Both biotypes were developed from a single population using the clone method. The growth and seed production of both GR and GS biotypes were similar in response to mungbean competition. Averaged over biotypes, there was a reduction in the growth and seed production ofE. colonaas crop plants increased. Compared with the weed plants grown alone, crop interference reducedE. colonaheight by 17% to 19%, tiller numbers by 69% to 82%, total shoot biomass by 85% to 91%, and inflorescence numbers by 74% to 91%. WhenE. colonawas grown with 8 mungbean plants pot−1, leaf weight ratio increased by 42% compared with plants grown alone. Compared with weed plants grown alone, mungbean interference (4 and 8 plants pot−1) reduced weed seed production by 85% to 95%. These reductions were similar for both biotypes (GR and GS), suggesting that there was no fitness penalty associated with resistance. The results of this study suggest that mungbean interference can reduceE. colonagrowth and seed production, but it should not be considered as a stand-alone strategy to manageE. colonaand similar species in mungbean. These results also highlight the need for integrating crop competition with other management strategies to achieve complete and sustainable management of this weed.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


2001 ◽  
Vol 41 (8) ◽  
pp. 1179 ◽  
Author(s):  
S. R. Walker ◽  
G. R. Robinson ◽  
R. W. Medd

The competitive advantage of barley compared with wheat was quantified for suppressing seed production of Avena ludoviciana Durieu. (wild oats) andPhalaris paradoxa L. (paradoxa grass), and for improving herbicide effectiveness on these major winter grass weeds of the subtropical grain region of Australia. Eight field experiments were broadcast with weed seed before sowing wheat or barley, in which the emerged weeds were then treated with 4 herbicide doses (0, 25, 50, 100% of recommended rates). Yield reduction from untreated weeds was on average 4 times greater in wheat than in barley, with greater losses from A. ludoviciana than P. paradoxa. Barley did not affect weed emergence, but suppressed weed tiller density and, to a lesser extent, the number of weed seeds per tiller. Seed production was, on average, 4340 and 5105 seeds/m2 for A. ludoviciana and P. paradoxa, respectively, in untreated wheat compared with 555 and 50 seeds/m2 in untreated barley. Weed seed production following treatment with 25% herbicide rate in barley was similar or less than that after treatment with 100% herbicide rate in wheat. Overall, 25% herbicide rate was optimal for both conserving yield and minimising weed seed production in barley. For wheat, maximum yield was achieved with 50% herbicide but weed seed production was lowest with 100% herbicide rate. This indicates that weeds can be effectively controlled in barley with considerably less herbicide than required in wheat, highlighting the importance of including barley as a part of weed management strategies that aim to reduce herbicide inputs.


2012 ◽  
Vol 5 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Angelica M. Herrera-Reddy ◽  
Raymond I. Carruthers ◽  
Nicholas J. Mills

AbstractIntegrated weed management strategies (IWM) are being advocated and employed to control invasive plants species. In this study, we compared three management strategies (biological control alone [BC], BC with fire [BC + F], and BC with mowing [BC + M]) to determine if physical controls reduce seed production by Scotch broom and interfere with the action of the biological control agent—the Scotch broom seed weevil. We measured seed production and seed predation by the weevil at both pod and plant scale, and seed bank density over two field seasons. We found no difference in the number of seeds per pod among management strategies. However, combining management strategies (BC + M and BC + F) resulted in significant reductions in pods per plant, mature seeds per plant, and seed bank density relative to biological control alone. We did not find differences among management strategies in number of weevils per pod or proportion of seeds predated by the weevil at either pod or whole-plant scale. However, combining management strategies (BC + M and BC + F) resulted in a significant reduction in healthy mature seeds per plant relative to biological control alone. Although both integrated strategies outperformed biological control alone in reducing seed production and the seed bank, with no statistical difference between them, we propose that short-rotation prescribed fire could prove to be a more effective strategy for long-term management of Scotch broom due to its potential for slightly greater depletion of the seed bank.


Weed Science ◽  
2013 ◽  
Vol 61 (1) ◽  
pp. 98-103 ◽  
Author(s):  
Bhagirath S. Chauhan

Greenhouse studies were conducted to evaluate the growth response of itchgrass to water stress. Itchgrass plants produced the greatest aboveground biomass and seeds at 75% of field capacity and these parameters at 50 and 100% of field capacity were similar. With further increase in water stress, seed production was sharply reduced, but itchgrass was still able to produce an average of 63 and 9 seeds plant−1at 25 and 12.5% of field capacity, respectively. Itchgrass plants responded to increasing water stress with increased leaf weight ratio; it was 2.5 times greater at 12.5% of field capacity than at 100% of field capacity. In another study, compared with daily irrigation, intervals of 9 d between irrigations reduced aboveground biomass of itchgrass by 27% and 12-d intervals reduced aboveground biomass by 67%. Compared with the daily irrigation regime, itchgrass seed production was reduced by 61% at intervals of 12 d between irrigations; however, the weed plants produced a considerable number of seeds (153 seeds plant−1) at the 12-d intervals. The ability of itchgrass to produce biomass and seeds under water stressed conditions necessitates strategies that minimize weed survival while maximizing irrigation efficiency for the crop at the same time.


2019 ◽  
Vol 37 ◽  
Author(s):  
C. PIASECKI ◽  
A.S. MAZON ◽  
A. MONGE ◽  
J.A. CAVALCANTE ◽  
D. AGOSTINETTO ◽  
...  

ABSTRACT: Glyphosate-resistant hairy fleabane [Conyza bonariensis (L.) Cronq.] is one of the most important weeds in the world. Among the factors that make this weed species widely distributed in the most diverse environments is the high seed production capacity and dispersal. Hairy fleabane plants not controlled by herbicide application regrowth and overcome crop canopy, use environmental resources, interfere with crops, and complete their life cycle by producing thousands of seeds and replenishing the seed bank. Management strategies that reduce production and viability of hairy fleabane seeds can be adopted within the integrated management to reduce the seed bank and prevent further infestations. In this way, experiments were carried out in a greenhouse and laboratory of seed analysis to evaluate the effect of glyphosate (1,480 g a.e. ha-1) on the production and viability of glyphosate-resistant hairy fleabane seeds when applied at the vegetative and reproductive stages. Seed production was reduced by 68.4 and 100% when glyphosate was applied on hairy fleabane plants at the vegetative and early reproductive stages, respectively, regarding to the control. The viability of hairy fleabane seeds was not influenced by treatments at the evaluated stages. However, glyphosate treatment reduced the hairy fleabane seed production when applied at the vegetative stage . Hairy fleabane seed production is not feasible when glyphosate is applied at the early reproductive stage.


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 314-322 ◽  
Author(s):  
David R. Clements ◽  
Diane L. Benoit ◽  
Stephen D. Murphy ◽  
Clarence J. Swanton

Weed seed return and seedbank composition, with particular reference to common lambsquarters, were studied in four tillage systems established on a site near Fingal, Ontario. The tillage treatments were moldboard plow, chisel plow, ridge-till, and no-till. The cropping system was a cornsoybean rotation. Tillage effects on weed population composition were assessed after all weed control measures had been implemented. More than 60% of the weed seedbank was concentrated in the upper 5 cm of soil in chisel plow and no-till. The seedbank of the moldboard plow system was more uniformly distributed over depth and larger than the other systems. Common lambsquarters comprised more than 50% of the seedbank in all systems except ridge-till, but only dominated the aboveground weed population in chisel plow. Seedbank populations of common lambsquarters with moldboard plowing were greater than those with ridge-till and no-till, and chisel plow seedbank populations were greater than those in ridge-till. Chisel and moldboard plow systems generally had higher aboveground plant populations of common lambsquarters than the other two systems. Seed production per plant by common lambsquarters was equivalent among the four systems, but estimated seed production per unit area was higher in moldboard plow and chisel plow systems than in the other systems. Populations of common lambsquarters and similar species may produce more seeds and persist in moldboard plow and chisel plow systems; these weeds may produce fewer seeds per unit area and be easier to manage in no-till and ridge-till systems.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Bryan Brown ◽  
Eric R. Gallandt

Weed management strategies differ in their ability to control weeds, and often have unique agroecological implications. To provide growers with an improved sense of trade-offs between weed control and ecological effects, we implemented several prominent organic weed management strategies in yellow onion in 2014 and 2015. Strategies included cultivation of weed seedlings during the early, weed-sensitive “critical period” of the crop; frequent cultivation events to ensure “zero seed rain”; and weed suppression with polyethylene or natural mulches. As expected, end-of-season weed biomass and weed seed production were greatest in the critical period system and nearly zero for the zero seed rain system. Weeds were also well controlled in natural mulch systems. Average onion yield per treatment was 50.7 Mg ha−1. In 2014, the critical period system and the polyethylene mulch systems demonstrated yield loss, likely due to weed competition and excessive soil temperature, respectively. Onion soluble solids content was also diminished in these systems in 2014, but bulb firmness was greatest in unmulched systems. Carabid beetles, earthworms, soil compaction, soil nitrate, and microbial biomass were affected by weed management strategy, with natural-mulched systems generally performing most favorably. However, these effects were not substantial enough to affect yield of a subsequent sweet corn crop grown in weed-free conditions. In contrast, sweet corn managed with only early-season cultivations demonstrated yield loss (P=0.004) in plots where the critical period treatment was implemented the prior year, indicating that weed competition resulting from abundant weed seed production in that system was the most influential legacy effect of the weed management strategies.


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 448-460 ◽  
Author(s):  
Tahir Hussain Awan ◽  
Pompe C. Sta. Cruz ◽  
Sharif Ahmed ◽  
Bhagirath Singh Chauhan

Due to the looming water and labor crisis, farmers are adopting dry-seeded rice establishment, in which Chinese sprangletop is becoming a major weed. Concerns about the excessive use of herbicides in controlling Chinese sprangletop highlight the need for cultural weed management strategies. Such strategies require an adequate understanding of Chinese sprangletop response to rice plant density, nutrition, and water regime. Therefore, a greenhouse study was conducted to determine the effect of water regime (aerobic and saturated), nitrogen (N) fertilization (50 and 150 kg ha−1), and rice density (0, 160, and 640 plants m−2) on the growth and reproduction of Chinese sprangletop. Chinese sprangletop plants were taller than rice in aerobic conditions than in saturated conditions. All growth parameters (shoot, root, and inflorescence biomass and leaf area, leaf weight, and inflorescence weight ratio) of Chinese sprangletop were higher in aerobic conditions than in saturated conditions when grown without rice. However, no difference was observed for these parameters between water regimes when Chinese sprangletop was grown with rice. Chinese sprangletop growth and seed production was not affected, but rice growth was affected by N rates. Irrespective of N rate and water regime, Chinese sprangletop height (34 to 59%), tiller number (87 to 92%), leaf number (83 to 89%), shoot biomass (93 to 99%), and inflorescence biomass (95 to 99%) decreased as rice density increased from 0 to 640 plants m−2. The ability of Chinese sprangletop to grow taller and produce more plant biomass (107%) and inflorescence biomass (183%) under aerobic than saturated conditions suggests the need for integrated weed management strategies for controlling weeds under water-limited environments. Such strategies might include the use of weed-competitive and drought-tolerant rice cultivars, high seeding rates, and optimum rate of fertilizer application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fathiya M. Khamis ◽  
Fidelis L. O. Ombura ◽  
Inusa J. Ajene ◽  
Komivi S. Akutse ◽  
Sevgan Subramanian ◽  
...  

AbstractWhiteflies (Hemiptera: Aleyrodidae) are devastating agricultural pests of economic importance vectoring pathogenic plant viruses. Knowledge on their diversity and distribution in Kenya is scanty, limiting development of effective sustainable management strategies. The present study is aimed at identifying whitefly pest species present in Kenya across different agroecological zones and establish predictive models for the most abundant species in Africa. Whiteflies were sampled in Kenya from key crops known to be severely infested and identified using 16S rRNA markers and complete mitochondrial genomes. Four whitefly species were identified: Aleyrodes proletella, Aleurodicus dispersus, Bemisia afer and Trialeurodesvaporariorum, the latter being the most dominant species across all the agroecology. The assembly of complete mitogenomes and comparative analysis of all 13 protein coding genes confirmed the identities of the four species. Furthermore, prediction spatial models indicated high climatic suitability of T. vaporariorum in Africa, Europe, Central America, parts of Southern America, parts of Australia, New Zealand and Asia. Consequently, our findings provide information to guide biosecurity agencies on protocols to be adopted for precise identification of pest whitefly species in Kenya to serve as an early warning tool against T. vaporariorum invasion into unaffected areas and guide appropriate decision-making on their management.


Sign in / Sign up

Export Citation Format

Share Document