Modulated Anisotropic Growth of 2D SnSe Based on the Difference in a/b/c-Axis Edge Atomic Structures

Author(s):  
Gonglei Shao ◽  
Xiong-Xiong Xue ◽  
Meiqing Yang ◽  
Junqiang Yang ◽  
Xiao Liu ◽  
...  
2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


2014 ◽  
Vol 778-780 ◽  
pp. 201-205
Author(s):  
Keisuke Sawada ◽  
Jun Ichi Iwata ◽  
Atsushi Oshiyama

We perform the first-principles calculations on the 4H-SiC(0001) surface and clarify the mechanism of the facet formation. We first identify atomic structures of single-, double- and quadribilayer steps and find that the single-bilayer (SB) step has the lowest total energy among these three step structures. Then, we reveal that the nanofacet consisting of SB steps is more energetically stable than the equally spaced SB step and the surface-energy variation caused by the difference of stacking sequences of the bi-atomic layer near the surface is an important factor of the facet formation.


2000 ◽  
Vol 644 ◽  
Author(s):  
M. Imafuku ◽  
S. Sato ◽  
T. Nakamura ◽  
H. Koshiba ◽  
E. Matsubara ◽  
...  

AbstractThe thermal stability and local atomic structures of glassy Fe70M10B20 (M = Hf, Zr, Nb, W and Cr) alloys were analyzed by DSC, ordinary X-ray diffraction and AXS measurements. The random network of the trigonal prism-like structure of (Fe,M)3B with edge-sharing, was identified in all the Fe70M10B20 (M = Hf, Zr, Nb, W and Cr) alloys in spite of the wide variety of thermal stability upon heating. Several unique primary precipitated crystalline phases, such as Fe23B6 type and Fe-M phases, were observed in the alloys exhibiting a high thermal stability. These crystallization reactions require relatively long range rearrangements of the constituents and hence the thermal stability of the glassy phase increases, leading to the appearance of a large supercooled liquid region upon heating. These phenomena may be originated from the difference in the chemical affinity and the atomic size mismatch between M and Fe or B.


2008 ◽  
Vol 403 ◽  
pp. 73-76
Author(s):  
Isao Tanaka ◽  
Akihide Kuwabara ◽  
Koretaka Yuge ◽  
Atsuto Seko ◽  
Fumiyasu Oba ◽  
...  

The phase stability of silicon nitride is examined using a series of first principles phonon calculations. -phase shows slightly higher free energy than  in the temperature range from 0 to 2000K. The difference between  and is only 0.02 eV/Si3N4 or 2 kJ/mol at 300 K. The result is consistent with the experimental report by high-temperature oxide-melt-drop solution-calorimetry. Similar calculations are made for ZrO2, Ga2O3, BN and some perovskites. Using cluster expansion technique combined with a large set of first principles calculations, the cation disordering of II-III spinel oxides and the phase diagram of diamond vs. c-BN are theoretically investigated. Theoretical results on the atomic structures of  and  sialons are also shown.


2019 ◽  
Author(s):  
Kinanti Aliyah ◽  
Jieli Lyu ◽  
Claire Goldmann ◽  
Thomas Bizien ◽  
Cyrille Hamon ◽  
...  

Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle x-ray scattering, optical absorbance spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties plays a shape-directing role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can easily be applied to a wide variety of synthesis strategies.<br>


2019 ◽  
Author(s):  
Kinanti Aliyah ◽  
Jieli Lyu ◽  
Claire Goldmann ◽  
Thomas Bizien ◽  
Cyrille Hamon ◽  
...  

Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle x-ray scattering, optical absorbance spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties plays a shape-directing role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can easily be applied to a wide variety of synthesis strategies.<br>


1992 ◽  
Vol 280 ◽  
Author(s):  
Yasushi Sasajima ◽  
Syubo Taya ◽  
Satoru Ozawa ◽  
Ryoichi Yamamoto

ABSTRACTThe initial stage of film formation process was studied by 2 dimensional (2D) Monte-Carlo (MC) simulation and 3D molecular dynamics (MD) simulation. The atomistic interaction was simple pair-wise Lcnnard-Joncs potential for the 2D MC study and embedded atom potential (EAM potential) for the 3D MD simulation. The 2D MC study has revealed the dependence of film growth mode on the potential parameters that correspond to atomic size and binding energy. More realistic MD simulation has been performed using EAM potential for the three kinds of systems, Ni/Cu(111), Ag/Cu(111) and Au/Ni(111). The relaxed atomic structures of such systems showed the difference of atomic combination; coherent interface was obtained for Ni/Cu(111) system, incoherent interface with specific rotational relationships for Ag/Cu(111) andAu/Ni(111).


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5824
Author(s):  
Wenxin Li ◽  
Jiawen Wang ◽  
Wanyu Ding ◽  
Youping Gong ◽  
Huipeng Chen ◽  
...  

Metal atoms were deposited on an Si (111)-7 × 7 surface, and they were adsorbed with alcohol gases (CH3OH/C2H5OH/C3H7OH). Initially, CnH2n+1OH adsorption was simply used as an intermediate layer to prevent the chemical reaction between metal and Si atoms. Through scanning tunneling microscopy (STM) and a mass spectrometer, the CnH2n+1OH dissociation process is further derived as the construction of a surface quasi-potential with horizontal and vertical directions. With the help of three typical metal depositions, the surface characteristics of CH3OH adsorption are more clearly presented in this paper. Adjusting the preheating temperature, the difference of thermal stability between CH3O– and H+ could be obviously derived in Au deposition. After a large amount of H+ was separated, the isolation characteristic of CH3O– was discussed in the case of Fe deposition. In the process of building a new metal-CH3O–-H+ model, the dual characteristics of CH3OH were synthetically verified in Sn deposition. CH3O– adsorption is prone to influencing the interaction between the metal deposition and substrate surface in the vertical direction, while H+ adsorption determines the horizontal behavior of metal atoms. These investigations lead one to believe that, to a certain extent, the formation of regular metal atomic structures on the Si (111)-7 × 7-CH3OH surface is promoted, especially according to the dual characteristics and adsorption models we explored.


1998 ◽  
Vol 13 (5) ◽  
pp. 1141-1146 ◽  
Author(s):  
Wai Lo ◽  
D. A. Cardwell ◽  
J. C. L. Chow

The characteristic platelet-like structure of large grain superconducting Y–Ba–Cu–O fabricated using peritectic solidification techniques has been documented widely as a key microstructural feature of this material. The platelet formation mechanism is investigated via a detailed comparison of the difference in morphology of YBa2Cu3O7–δ (123) growth fronts propagating along different lattice directions. The development of YBa2Cu3O7–δ dendrites between the growth front and local Y2BaCuO5 (211) particles is observed to be a key feature of the growth mechanism along all directions. Dendrites broaden rapidly for growth fronts propagating along the c-axis due to the enhanced growth rate of Y–Ba–Cu–O in the a-b plane to yield a uniform, regular growth morphology. Dendrite broadening is inhibited for grain growth along the a-b directions, however, due to the slower growth rate along the c-axis, which yields an irregular extended growth front. Growth along the a/b direction commonly results in the formation of regions consisting of 123 dendrites which may connect 211 particles. Continued solidification of the 123 phase in such regions results in the development of platelet structures perpendicular to the crystallographic c-axis in the YBa2Cu3O7–δ phase matrix which may impede the flow of current through the grain in the superconducting state.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


Sign in / Sign up

Export Citation Format

Share Document