Cyanide Poisoning Compromises Gene Pathways Modulating Cardiac Injury in Vivo

Author(s):  
Ki H. Ma ◽  
Dennean S. Lippner ◽  
Kelly A. Basi ◽  
Susan M. DeLeon ◽  
William R. Cappuccio ◽  
...  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dezhong Wang ◽  
Yuan Yin ◽  
Shuyi Wang ◽  
Tianyang Zhao ◽  
Fanghua Gong ◽  
...  

AbstractAs a classically known mitogen, fibroblast growth factor 1 (FGF1) has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection. Here, we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy (DCM) patients, indicating that FGF1 is a potential therapeutic target for DCM. We found that treatment with a FGF1 variant (FGF1∆HBS) with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function. RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1∆HBS treatment. Both in vivo and in vitro studies indicate that FGF1∆HBS exerted these beneficial effects by markedly reducing mitochondrial fragmentation, reactive oxygen species (ROS) generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5’ AMP-activated protein kinase (AMPK)/Nur77-dependent manner, all of which were not observed in the AMPK null mice. The favorable metabolic activity and reduced proliferative properties of FGF1∆HBS testify to its promising potential for use in the treatment of DCM and other metabolic disorders.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Diana García-Cerrillo ◽  
Ruth Noriega-Cisneros ◽  
Donovan Peña-Montes ◽  
Maribel Huerta-Cervantes ◽  
Mónica Silva-Ríos ◽  
...  

Metabolic diseases have increased considerably such as diabetes mellitus (DM). Since diabetes is a systemic disease, it implies high cardiovascular risks. It has been widely established that cardiac injury is related to mitochondrial dysfunction through increment of reactive oxygen species (ROS). Synthetic antioxidants can have important side effects; therefore natural sources may represent a better option. Traditional Mexican medicine has been using Eryngium carlinae (EC) for medical treatment. Also our group showed that hexanic extract possesses in vitro antioxidant capacity. Experimental diabetes in Wistar rats was generated by streptozotocin (STZ) and hexanic extract of EC was supplied for 7 weeks (30 mg/kg). Cholesterol, triacylglycerides, glucose, and thiobarbituric acid reactive substances (TBARS) levels were determined in serum. Mitochondria from left ventricle were used in the quantification of TBARS, reduced glutathione, nitric oxide (NO) levels and activity of superoxide dismutase (SOD) enzyme was performed.  Biochemical parameters of glucose and triacylglycerides, as well as TBARS levels in serum show a significant reduction in diabetic group supplied with EC hexanic extract. Thus, we can conclude that the EC hexanic extract possesses antioxidant activity in vitro, and in vivo, by reducing glucose and triacylglycerides levels during hyperglycemia, which may eventually reduce the risk of developing diabetic cardiomyopathy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Andrew J Smith ◽  
Iolanda Aquila ◽  
Beverley J Henning ◽  
Mariangela Scalise ◽  
Bernardo Nadal-Ginard ◽  
...  

The identification of resident, endogenous cardiac stem cells (eCSCs) has re-shaped our understanding of cardiac cellular physiology, while offering a significant potential therapeutic avenue. The biology of these cells must be better understood to harness their potential benefits. We used an acute dose (s.c.; 5mgkg-1) of isoproterenol (ISO) to induce diffuse cardiac injury, with associated eCSC activation, in rats. As peak eCSC activation was at 24 hours post ISO-injury, c-kitpos eCSCs were isolated, characterised and their potential for growth and regenerative potential was assessed in vitro and in vivo, respectively. Activated eCSCs showed increased cell cycling activity (51+1% in S- or G2/M phases vs. 9+2% of quiescent), Ki67 expression (56+7% vs. 10+1%) and TERT expression (14-fold increase vs. quiescent). When directly harvested in culture, activated eCSCs showed augmented proliferation, clonogenicity and cardiosphere formation compared to quiescent eCSCs. Activated eCSCs showed increases in expression of numerous growth factors, particularly HGF, IGF-1, TGF-β, periostin, PDGF-AA and VEGF-A. Furthermore, significant alterations were found in the miRnome, notably increased miR-146b and -221, and decreased miR-192 and -351. ISO+5FU was administrated to mice to induce a model of chronic dilated cardiomyopathy, which is characterized by the ablation of eCSCs and the absence of cardiomyocyte replenishment. In these mice with chronic heart failure, freshly isolated quiescent eCSCs or activated eCSCs (2d post-ISO) were injected through the tail vein. 28 days after injection, activated but not quiescent eCSCs re-populated the resident CSC pool, promoted robust new cardiomyocyte formation and improved cardiac function when compared to saline-treated mice. Dual-labelling with BrdU and EdU at selected stages after ISO injury determined that activated eCSCs returned to a quiescent level by 10 weeks post-injury. In conclusion, CSCs rapidly switch from a quiescent to an activated state to match the myocardial needs for myocyte replacement after injury and then spontaneously go back to quiescence. Harnessing the molecules regulating this process may open up future novel approaches for effective myocardial regeneration.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kimberly Ferrero ◽  
Jessica M Pfleger ◽  
Kurt Chuprun ◽  
Eric Barr ◽  
Erhe Gao ◽  
...  

The GPCR kinase GRK2 is highly expressed the heart; importantly, during cardiac injury or heart failure (HF) both levels and activity of GRK2 increase. The role of GRK2 during HF is canonically studied upstream of β-adrenergic desensitization. However, GRK2 has a large interactome and noncanonical functions for this kinase are being uncovered. We have discovered that in the heart, GRK2 translocates to mitochondria ( mtGRK2 ) following injury and is associated with negative effects on cardiac metabolism. Thus, we have sought to identify the mechanism(s) by which GRK2 can regulate mitochondrial function. We hypothesize that mtGRK2 interacts with proteins which regulate bioenergetics and substrate utilization, and this never-before-described role may partially explain the altered mitochondrial phenotype seen following cardiac injury or HF. Stress-induced mitochondrial translocation of GRK2 was validated in neonatal rat ventricular myocytes, murine heart tissue and a cardiac-derived cell line. Consequently, the GRK2 interactome was mapped basally and under stress conditions in vitro, in vivo , and with tagged recombinant peptides. GRK2-interacting proteins were isolated via immunoprecipitation and analyzed via liquid chromatography-mass spectroscopy (LCMS). Proteomics analysis (IPA; Qiagen) identified mtGRK2 interacting proteins which were also involved in mitochondrial dysfunction. Excitingly, Complexes I, II, IV and V (ATP synthase) of the electron transport chain (ETC) were identified in the subset of mtGRK2-dysfunction partners. Several mtGRK2-ETC interactions were increased following stress, particularly those in Complex V. We further established that mtGRK2 phosphorylates some of the subunits of Complex V, particularly the ATP synthase barrel which is critical for ATP production in the heart. Specific amino acid residues on these subunits have been identified using PTM-LCMS and are currently being validated in a murine model of myocardial infarction. To support these data, we have also determined that alterations in either the levels or kinase activity of GRK2 appear to alter the enzymatic activity of Complex V in vitro , thus altering ATP production. In summary, the phosphorylation of the ATP synthesis machinery by mtGRK2 may be regulating some of the phenotypic effects of injured or failing hearts such as increased ROS production and reduced fatty acid metabolism. Research is ongoing in our lab to elucidate the novel role of GRK2 in regulating mitochondrial bioenergetics and cell death, thus uncovering an exciting, druggable novel target for rescuing cardiac function in patients with injured and/or failing hearts.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Gang Li ◽  
Wen-Rui Li ◽  
Ya-Ge Jin ◽  
Qi-Qiang Jie ◽  
Cheng-Yu Wang ◽  
...  

Oxidative damage is closely involved in the development of doxorubicin- (DOX-) induced cardiotoxicity. It has been reported that tetrandrine can prevent the development of cardiac hypertrophy by suppressing reactive oxygen species- (ROS-) dependent signaling pathways in mice. However, whether tetrandrine could attenuate DOX-related cardiotoxicity remains unclear. To explore the protective effect of tetrandrine, mice were orally given a dose of tetrandrine (50 mg/kg) for 4 days beginning one day before DOX injection. To induce acute cardiac injury, the mice were exposed to a single intraperitoneal injection of DOX (15 mg/kg). The data in our study showed that tetrandrine prevented DOX-related whole-body wasting and heart atrophy, decreased markers of cardiac injury, and improved cardiac function in mice. Moreover, tetrandrine supplementation protected the mice against oxidative damage and myocardial apoptotic death. Tetrandrine supplementation also reduced ROS production and improved cell viability after DOX exposure in vitro. We also found that tetrandrine supplementation increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and activity in vivo and in vitro. The protection of tetrandrine supplementation was blocked by Nrf2 deficiency in mice. In conclusion, our study found that tetrandrine could improve cardiac function and prevent the development of DOX-related cardiac injury through activation of Nrf2.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jie Ni ◽  
Yihai Liu ◽  
Lina Kang ◽  
Lian Wang ◽  
Zhonglin Han ◽  
...  

AbstractHuman trophoblast stem cells (TSCs) have been confirmed to play a cardioprotective role in heart failure. However, whether trophoblast stem cell-derived exosomes (TSC-Exos) can protect cardiomyocytes from doxorubicin (Dox)-induced injury remains unclear. In the present study, TSC-Exos were isolated from the supernatants of human trophoblasts using the ultracentrifugation method and characterized by transmission electron microscopy and western blotting. In vitro, primary cardiomyocytes were subjected to Dox and treated with TSC-Exos, miR-200b mimic or miR-200b inhibitor. Cellular apoptosis was observed by flow cytometry and immunoblotting. In vivo, mice were intraperitoneally injected into Dox to establish a heart failure model. Then, different groups of mice were administered either PBS, adeno-associated virus (AAV)-vector, AAV-miR-200b-inhibitor or TSC-Exos via tail vein injection. Then, the cardiac function, cardiac fibrosis and cardiomyocyte apoptosis in each group were evaluated, and the downstream molecular mechanism was explored. TSC-Exos and miR-200b inhibitor both decreased primary cardiomyocyte apoptosis. Similarly, mice receiving TSC-Exos and AAV-miR-200b inhibitor exhibited improved cardiac function, accompanied by reduced apoptosis and inflammation. The bioinformatic prediction and luciferase reporter results confirmed that Zeb1 was a downstream target of miR-200b and had an antiapoptotic effect. TSC-Exos attenuated doxorubicin-induced cardiac injury by playing antiapoptotic and anti-inflammatory roles. The underlying mechanism could be an increase in Zeb1 expression by the inhibition of miR-200b expression. In summary, this study sheds new light on the application of TSC-Exos as a potential therapeutic tool for heart failure.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yan ◽  
Si-Chi Xu ◽  
Chun-Yan Kong ◽  
Xiao-Yang Zhou ◽  
Zhou-Yan Bian ◽  
...  

Background. Oxidative stress, inflammation and cardiac apoptosis were closely involved in doxorubicin (DOX)-induced cardiac injury. Piperine has been reported to suppress inflammatory response and pyroptosis in macrophages. However, whether piperine could protect the mice against DOX-related cardiac injury remain unclear. This study aimed to investigate whether piperine inhibited DOX-related cardiac injury in mice. Methods. To induce DOX-related acute cardiac injury, mice in DOX group were intraperitoneally injected with a single dose of DOX (15 mg/kg). To investigate the protective effects of piperine, mice were orally treated for 3 weeks with piperine (50 mg/kg, 18:00 every day) beginning two weeks before DOX injection. Results. Piperine treatment significantly alleviated DOX-induced cardiac injury, and improved cardiac function. Piperine also reduced myocardial oxidative stress, inflammation and apoptosis in mice with DOX injection. Piperine also improved cell viability, and reduced oxidative damage and inflammatory factors in cardiomyocytes. We also found that piperine activated peroxisome proliferator-activated receptor-γ (PPAR-γ), and the protective effects of piperine were abolished by the treatment of the PPAR-γ antagonist in vivo and in vitro. Conclusions. Piperine could suppress DOX-related cardiac injury via activation of PPAR-γ in mice.


2016 ◽  
Vol 125 (6) ◽  
pp. 1171-1180 ◽  
Author(s):  
Yao Lu ◽  
Honit Piplani ◽  
Stacy L. McAllister ◽  
Carl M. Hurt ◽  
Eric R. Gross

Abstract Background Recent evidence suggests that cross talk exists between cellular pathways important for pain signaling and ischemia–reperfusion injury. Here, the authors address whether the transient receptor potential ankyrin 1 (TRPA1) channel, important in pain signaling, is present in cardiac myocytes and regulates cardiac ischemia–reperfusion injury. Methods For biochemical analysis of TRPA1, techniques including quantitative polymerase chain reaction, Western blot, and immunofluorescence were used. To determine how TRPA1 mediates cellular injury, the authors used an in vivo model of rat cardiac ischemia–reperfusion injury and adult rat–isolated cardiac myocytes subjected to hypoxia–reoxygenation. Results The authors’ biochemical analysis indicates that TRPA1 is within the cardiac myocytes. Further, using a rat in vivo model of cardiac injury, the TRPA1 activators ASP 7663 and optovin reduce myocardial injury (45 ± 5%* and 44 ± 8%,* respectively, vs. control, 66 ± 6% infarct size/area at risk; n = 6 per group; mean ± SD; *P < 0.001). TRPA1 inhibition also blocked the infarct size–sparing effects of morphine. In isolated cardiac myocytes, the TRPA1 activators ASP 7663 and optovin reduce cardiac myocyte cell death when given during reoxygenation (20 ± 3%* and 22 ± 4%* vs. 36 ± 3%; percentage of dead cells per field, n = 6 per group; mean ± SD; *P < 0.05). For a rat in vivo model of cardiac injury, the infarct size–sparing effect of TRPA1 activators also occurs during reperfusion. Conclusions The authors’ data suggest that TRPA1 is present within the cardiac myocytes and is important in regulating myocardial reperfusion injury. The presence of TRPA1 within the cardiac myocytes may potentially explain why certain pain relievers that can block TRPA1 activation, such as cyclooxygenase-2 inhibitors or some nonsteroidal antiinflammatory drugs, could be associated with cardiovascular risk.


2013 ◽  
Vol 305 (2) ◽  
pp. E243-E253 ◽  
Author(s):  
Vernon W. Dolinsky ◽  
Kyle J. Rogan ◽  
Miranda M. Sung ◽  
Beshay N. Zordoky ◽  
Mark J. Haykowsky ◽  
...  

Because doxorubicin (DOX)-containing chemotherapy causes left ventricular (LV) dysfunction and remodeling that can progress to heart failure, strategies to alleviate DOX cardiotoxicity are necessary to improve health outcomes of patients surviving cancer. Although clinical evidence suggests that aerobic exercise training (ET) can prevent cardiotoxicity in patients undergoing DOX chemotherapy, the physiological mechanisms involved have not been extensively studied, nor is it known whether compounds [such as resveratrol (RESV)] have similar beneficial effects. With the use of a murine model of chronic DOX exposure, this study compared the efficacy of modest ET to RESV treatment on exercise performance, LV remodeling, and oxidative stress resistance. Mice were divided into four groups that received saline, DOX (8 mg/kg ip, one time per week), DOX + RESV (4 g/kg diet, ad libitum), and DOX + ET (45 min of treadmill exercise, 5 days/wk) for 8 wk. LV function and morphology were evaluated by in vivo echocardiography. DOX caused adverse LV remodeling that was partially attenuated by modest ET and completely prevented by RESV. These effects were paralleled by improvements in exercise performance. The cardioprotective properties of ET and RESV were associated with reduced levels of atrial natriuretic peptide and the lipid peroxidation by-product, 4-hydroxy-2-nonenal. In addition, ET and RESV increased the expression of cardiac sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a, superoxide dismutase, mitochondrial electron transport chain complexes, and mitofusin-1 and -2 in mice administered DOX. Compared with modest ET, RESV more effectively prevented DOX-induced LV remodeling and was associated with the reduction of DOX-induced oxidative stress. Our findings have important implications for protecting patients against DOX-associated cardiac injury.


Sign in / Sign up

Export Citation Format

Share Document