Biosynthesis of Polyunsaturated Fatty Acids in the Razor Clam Sinonovacula constricta: Characterization of Δ5 and Δ6 Fatty Acid Desaturases

2018 ◽  
Vol 66 (18) ◽  
pp. 4592-4601 ◽  
Author(s):  
Zhaoshou Ran ◽  
Jilin Xu ◽  
Kai Liao ◽  
Shuang Li ◽  
Shubing Chen ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6871-6880 ◽  
Author(s):  
Chunchi Rong ◽  
Haiqin Chen ◽  
Xin Tang ◽  
Zhennan Gu ◽  
Jianxin Zhao ◽  
...  

Fatty acid desaturases are key enzymes in the biosynthesis of n-3 polyunsaturated fatty acids (PUFAs) via conversion of n-6 polyunsaturates to their n-3 counterparts.


Author(s):  
Brian K H Mo ◽  
Akinori Ando ◽  
Ryohei Nakatsuji ◽  
Tomoyo Okuda ◽  
Yuki Takemoto ◽  
...  

Abstract ω3 polyunsaturated fatty acids are currently obtained mainly from fisheries, thus sustainable alternative sources such as oleaginous microorganisms are required. Here we describe the isolation, characterization, and application of three novel ω3 desaturases with ω3 polyunsaturated fatty acid-producing activity at ordinary temperatures (28 °C). First, we selected Pythium sulcatum and Plectospira myriandra after screening for oomycetes with high eicosapentaenoic acid/arachidonic acid ratios and isolated the genes psulω3 and pmd17, respectively, which encode ω3 desaturases. Subsequent characterization showed that PSULω3 exhibited ω3 desaturase activity on both C18 and C20 ω6 polyunsaturated fatty acids while PMD17 exhibited ω3 desaturase activity exclusively on C20 ω6 polyunsaturated fatty acids. Expression of psulω3 and pmd17 in the arachidonic acid-producer Mortierella alpina resulted in transformants that produced eicosapentaenoic acid/total fatty acid values of 38% and 40%, respectively, at ordinary temperatures. These ω3 desaturases should facilitate the construction of sustainable ω3 polyunsaturated fatty acid sources.


2019 ◽  
Vol 20 (12) ◽  
pp. 3058 ◽  
Author(s):  
Pushkar Shrestha ◽  
Xue-Rong Zhou ◽  
Sapna Vibhakaran Pillai ◽  
James Petrie ◽  
Robert de Feyter ◽  
...  

Omega-3 long chain polyunsaturated fatty acids (ω3 LC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5ω3) and docosahexaenoic acid (DHA; 22:6ω3) are important fatty acids for human health. These ω3 LC-PUFAs are produced from their ω3 precursors by a set of desaturases and elongases involved in the biosynthesis pathway and are also converted from ω6 LC-PUFA by omega-3 desaturases (ω3Ds). Here, we have investigated eight ω3-desaturases obtained from a cyanobacterium, plants, fungi and a lower animal species for their activities and compared their specificities for various C18, C20 and C22 ω6 PUFA substrates by transiently expressing them in Nicotiana benthamiana leaves. Our results showed hitherto unreported activity of many of the ω3Ds on ω6 LC-PUFA substrates leading to their conversion to ω3 LC-PUFAs. This discovery could be important in the engineering of EPA and DHA in heterologous hosts.


2000 ◽  
Vol 28 (6) ◽  
pp. 661-663 ◽  
Author(s):  
F. Beaudoin ◽  
L. V. Michaelson ◽  
M. J. Lewis ◽  
P. R. Shewry ◽  
O. Sayanova ◽  
...  

Using a combination of database-mining and functional characterization, we have identified a component of the polyunsaturated fatty acid (PUFA) elongase. Co-expression of this elongating activitiy with fatty acid desaturases has allowed us to heterologously reconstitute the PUFA biosynthetic pathway. Both these enzymes (desaturases and elongase components) have undergone gene-duplication events which provide a paradigm for the diverged nature of PUFA biosynthetic activities.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hung Van Le ◽  
Don Viet Nguyen ◽  
Quang Vu Nguyen ◽  
Bunmi Sherifat Malau-Aduli ◽  
Peter David Nichols ◽  
...  

2000 ◽  
Vol 70 (1) ◽  
pp. 51-61 ◽  
Author(s):  
L. O. W. McClintont ◽  
A. F. Carson

AbstractThis study investigated the efficiency of growth and the carcass characteristics of 24 Greyface (Border Leicester × Scottish Blackface), 24 Texel (12 purebred and 12 Texel × Texel-Greyface) and 24 Rouge (12 purebred and 12 Rouge × Rouge-Greyface) lambs finished on the same level of feeding. The efficiency of live-weight gain (kg/MJ) was higher in Greyface compared with Texel lambs (P< 0·01). The efficiency of empty body-weight gain (kg/MJ) was higher in Greyface (P< 0·01) and Rouge (P< 0·05) compared with Texel lambs. The efficiency of carcass gains (kg/MJ) tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·07). The efficiency of non-carcass component gains (kg/MJ) was also higher in Greyface compared with Texel lambs (P0·05). Carcass water, protein, lipid and ash gains did not vary significantly between the genotypes, however carcass energy gain tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·08). The relative proportions of water, protein, lipid and ash in carcass gains did not vary significantly between the genotypes. At the end of the experiment carcass water content was higher in Texel compared with Greyface lambs (P< 0·05) and carcass ash content was lower in Texel compared with Greyface (P< 0·01) and Rouge (P< 0·05) lambs. The concentration of saturated fatty acids was higher in Greyface compared with Rouge lambs (P< 0·001) and higher in Rouge compared with Texel lambs (P< 0·05). Monounsaturated fatty acid concentrations were higher in Rouge compared with Greyface lambs (P< 0·05) and higher in Texel compared with Rouge lambs (P< 0·001). Polyunsaturated fatty acid concentrations were higher in Rouge and Texel compared with Greyface lambs (P< 0·01). The ratio of n-6:n-3 fatty acids was lower in Rouge compared with Greyface lambs (P< 0·05).The efficiency of empty body gain was higher in male compared with female lambs (P< 0·05). Carcass water (P< 0·01) and protein (P< 0·05) gains were higher in male lambs. At the end of the experiment male carcasses contained a higher content of water (P< 0·05), protein (P< 0·01) and ash (P= 0·07), and a lower lipid (P< 0·05) and energy (P< 0·001) content. Carcass lipids from male lambs contained a higher concentration of polyunsaturated fatty acids (P< 0·001) and tended to contain a lower concentration of saturated fatty acids (P = 0·06).


Sign in / Sign up

Export Citation Format

Share Document