Magnetic and New Optical Properties in the UV–visible Range of the Egyptian Blue Pigment Cuprorivaite CaCuSi4O10

Author(s):  
Laurent Binet ◽  
Juliette Lizion ◽  
Sylvain Bertaina ◽  
Didier Gourier
2014 ◽  
Vol 979 ◽  
pp. 343-346 ◽  
Author(s):  
Natthakridta Chanthima ◽  
Jakrapong Kaewkhao

Borophosphate glasses have been synthesized with a Bi2O3concentration of 15.0 to 25.0 mol%, added 2.5 mol% for each concentration, by the normal melt quenching technique at 1200 °C. The physical and optical properties of bismuth borophosphate glass systems have been studied. The glasses are characterized for their physical and optical properties. The density and molar volume of these glasses were found in the range 3.4391 to 3.9338 g/cm3and 52.2515 to 55.7557 cm3/mol, respectively. It was observed that the density and molar volume of these glasses was increased with increasing the concentration of Bi2O3. The absorption spectra of these glasses were recorded in the UV-Visible range. It has been found that, the absorption spectra were shifted to longer wavelength with higher Bi2O3concentration. In addition, the oxygen packing density of glass samples have been also investigated.


2021 ◽  
Author(s):  
Maheswar Panda

Abstract The micro-structural features and the optical properties of polymer blends (PB) of polyvinylidene fluoride (PVDF) base with polyethylene glycol (PEG) and polymer nanocomposites (PNC) of PVDF base with graphene oxide (GO) as fillers are compared. Different weight fractions of PVDF/PEG and PVDF/GO samples were prepared through solution casting followed by spin coating. The microstructure of PVDF/PEG and PVDF/GO shows formation of immiscible/compatible/ homogenous microstructures over different extents of loading of the filler components. UV-Visible spectrometry revealed an increase in absorbance with the amount of filler and the absorbance was found to be lesser and highly dispersive for the PB as compared to PNC, attributed to the heterogeneity/electrical conductivity of the respective fillers of the two systems. Spectroscopic ellipsometry was used to study the various optical constants (e.g. refractive index, extinction co-efficient, etc.) & their dispersion behavior over the visible range of wavelengths. The parameters show large variation as a function of component fillers due to the different extent of interaction of matrix/filler. The optimized parameters were obtained for the 20% PB & the 5% PNC samples respectively, suggesting PNC with nano fillers are always to be a better choice for developing them as materials suitable for various optical applications.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 724
Author(s):  
Tong Li ◽  
Masaya Ichimura

Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1648
Author(s):  
Muaffaq M. Nofal ◽  
Shujahadeen B. Aziz ◽  
Jihad M. Hadi ◽  
Wrya O. Karim ◽  
Elham M. A. Dannoun ◽  
...  

In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet–visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc’s method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 424
Author(s):  
Cuihua Zhao ◽  
Baishi Li ◽  
Xi Zhou ◽  
Jianhua Chen ◽  
Hongqun Tang

The electronic structures and optical properties of pure, Ag-doped and S-doped α-Fe2O3 were studied using density functional theory (DFT). The calculation results show that the structure of α-Fe2O3 crystal changes after Ag and S doping, which leads to the different points of the high symmetry of Ag-doped and S-doped α-Fe2O3 with that of pure α-Fe2O3 in the energy band, as well as different Brillouin paths. In addition, the band gap of α-Fe2O3 becomes smaller after Ag and S doping, and the optical absorption peak shifts slightly toward the short wavelength, with the increased peak strength of S/α-Fe2O3 and the decreased peak strength of Ag/α-Fe2O3. However, the optical absorption in the visible range is enhanced after Ag and S doping compared with that of pure α-Fe2O3 when the wavelength is greater than 380 nm, and the optical absorption of S-doped α-Fe2O3 is stronger than that of Ag-doped α-Fe2O3.


2012 ◽  
Vol 476-478 ◽  
pp. 1519-1522 ◽  
Author(s):  
You Dao Lin ◽  
Xin Wen ◽  
Lai Sen Wang ◽  
Guang Hui Yue ◽  
Dong Liang Peng

Abstract. Single crystalline SnS nanowire arrays have been synthesized by sulfurating the Sn nanowire arrays which were prepared with the electrochemical deposition. The obtained SnS nanowire arrays are charactered with the XRD, SEM, TEM and the UV/Visible/NIR spectrophotometer. And the results indicate that the nanowires with an average diameter of 50 nm and a length of several tens micrometers, which same with the as prepared Sn nanowires. There are two absorption peaks indicate with the direct and indirect bandgaps about the orthorhombic SnS nanowire arrays.


2009 ◽  
Vol 2009 (5) ◽  
pp. 312-316 ◽  
Author(s):  
Chun Keun Jang ◽  
Jae Yun Jaung

Some phthalocyanines soluble in organic solvents have been developed by peripheral introduction of substituent groups. We report a new method for preparation of the polyphenyl-substituted dicyanopyrazines based on the [2 + 4] Diels-Alder cycloaddition of the tetraphenylcyclopentadienone to an ethynyl compound. The synthesised tetrapyrazinoporphyrazinato metal complexes were characterised by UV-visible spectroscopy, MALDI-TOF-Ms (matrix-assisted laser desorption ionisation time-of-flight mass) spectroscopy, and 1H NMR spectroscopy.


2015 ◽  
Vol 17 (2) ◽  
pp. 64-69 ◽  
Author(s):  
Maria Galbas ◽  
Agnieszka Banaszczyk ◽  
Gabriela Dyrda ◽  
Kszysztof Szczegot ◽  
Rudolf Słota

Abstract Hybrid catalysts based on the TiO2 matrix impregnated with Nd, Eu and Yb diphthalocyanines proved effective in oxidation of sulfite ions under irradiation with light from the UV-visible range. Micro- and nano-crystalline anatase powders were used in preparation of the photocatalysts, which were applied in the form of a suspension in the water phase. The reaction yield was found to depend on the phthalocyanine sensitizer used and the conditions of TiO2 impregnation. The best results were obtained when micro-anatase impregnated with Yb-diphthalocyanine was used.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


Sign in / Sign up

Export Citation Format

Share Document