scholarly journals Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements

2017 ◽  
Vol 16 (7) ◽  
pp. 2537-2546 ◽  
Author(s):  
Chen Qian ◽  
Robert L. Hettich
2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


2004 ◽  
Vol 52 (3) ◽  
pp. 227-235 ◽  
Author(s):  
R. Nandakumar ◽  
A. Saravanan ◽  
P. Singaram ◽  
B. Chandrasekaran

Field experiments were conducted with rice (ADT-39) during the wet Kharif season (July- October 2001) at two locations, the Tamil Nadu Rice Research Institute (TRRI) farm, Aduthurai (Vertisol) and the Agricultural Research Station (ARS) farm, Pattukkottai (Alfisol), representing the old and new delta areas of the Cauvery, respectively. The same set of treatments was followed in both soils. The treatments consisted of the recommended NPK fertilizer application at 75% and 100% alone, and 10 or 20 kg ha-1 humic acid (HA) in combination with NPK fertilizers as soil application, besides an integrated method involving soil application, root dipping and foliar spraying with humic acid and NPK fertilizers. initial soil samples from the experimental fields were analysed for physical, physico-chemical and chemical properties. Surface soil samples were collected at critical growth stages and analysed for various available nutrients. The results of the field experiments revealed that the application of humic acid along with inorganic fertilizers led to higher soil nutrient availability at all the growth stages of rice. Similar results were obtained in both Vertisol and Alfisol. The present investigation concluded that the best treatment for soil nutrient availability was 10 kg ha-1 HA (soil application) + 0.1% HA foliar spray (twice) + 0.3% HA root dipping + 100% NPK, which was on par with the treatment involving 20 kg ha-1 HA (soil application) + 100% NPK compared to the other treatments.


Radiocarbon ◽  
2006 ◽  
Vol 48 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Femke H Tonneijck ◽  
Johannes van der Plicht ◽  
Boris Jansen ◽  
Jacobus M Verstraten ◽  
Henry Hooghiemstra

Volcanic ash soils (Andosols) may offer great opportunities for paleoecological studies, as suggested by their characteristic accumulation of organic matter (OM). However, understanding of the chronostratigraphy of soil organic matter (SOM) is required. Therefore, radiocarbon dating of SOM is necessary, but unfortunately not straightforward. Dating of fractions of SOM obtained by alkali-acid extraction is promising, but which fraction (humic acid or humin) renders the most accurate 14C dates is still subject to debate. To determine which fraction should be used for 14C dating of Andosols and to evaluate if the chronostratigraphy of SOM is suitable for paleoecological research, we measured 14C ages of both fractions and related calibrated ages to soil depth for Andosols in northern Ecuador. We compared the time frames covered by the Andosols with those of peat sequences nearby to provide independent evidence. Humic acid (HA) was significantly older than humin, except for the mineral soil samples just beneath a forest floor (organic horizons), where the opposite was true. In peat sections, 14C ages of HA and humin were equally accurate. In the soils, calibrated ages increased significantly with increasing depth. Age inversions and homogenization were not observed at the applied sampling distances. We conclude that in Andosols lacking a thick organic horizon, dating of HA renders the most accurate results, since humin was contaminated by roots. On the other hand, in mineral soil samples just beneath a forest floor, humin ages were more accurate because HA was then contaminated by younger HA illuviated from the organic horizons. Overall, the chronostratigraphy of SOM in the studied Andosols appears to be suitable for paleoecological research.


2014 ◽  
Vol 6 (15) ◽  
pp. 5519-5526 ◽  
Author(s):  
Kai Fang ◽  
Dongxing Yuan ◽  
Lei Zhang ◽  
Lifeng Feng ◽  
Yaojin Chen ◽  
...  

A laboratory synthesized Fe-HA complex was used as a standard to develop a simple SPE method for analysis of Fe-HA complex in natural water.


2020 ◽  
Vol 45 (4) ◽  
Author(s):  
A.O. Abdullahi ◽  
A. Usman ◽  
A.H. Zakari ◽  
J.R. Tukur

This research work is aimed at determining the chemical speciation of metals Zn, Mn, Fe and Pb in soil samples from three major dumpsites within Gombe metropolis, Gombe state. The renowned five steps Tessier sequential extraction method was employed in the extraction of the heavy metals. The metals were extracted into five fractions namely: Exchangeable (F1), carbonate bound (F2), Fe-Mn oxide bound (F3), Bound to organic matter (F4) and the residual fraction (F5) in order of decreasing mobility. The elemental analysis of the fractions was carried out using atomic absorption spectrometric technique. The results showed Zn was predominantly bounded to the exchangeable fraction with 32.66±0.31 mg/kg (54.18%) and least in the Fe – Mn oxide fraction with 0.01±0.00 mg/kg (0.02%). The trend in its abundance is in the order F1> F2>F5>F4>F3. Mn was predominantly associated with the bound to carbonates fraction with the value of 103.3.±3.30 mg/kg (56.14%) and least in the exchangeable with the value of 1.30±1.85mg/kg (2.13%) its occurred in the order F2>F3>F4>F5>F1. The concentration of Fe was highest in the residual fraction with the value of 25.90±1.75mg/kg (45.45%)and least in the carbonate bound fraction wi th 5.10±0.40 mg/kg (2.13%) the order is F5>F4>F3>F2>F1. Pb was not detected in most of the fraction but highest in bond to carbonate and bond to organic matter fraction with the values of 6.64±4.12 mg/Kg (70.64 %) and 2.76±0.10 mg/Kg (29.36 %) respectively in two different samples. It was however established that Zn, Mn and Pb were mostly associated with the first three fractions thus, showed high bio-availabilty whereas Fe was found in the residual fraction and is expected to be low in mobility and less bioavailable. 


1981 ◽  
Vol 53 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Helinä Hartikainen

The extractability of P by the water and anion exchange resin methods and reactions of soil inorganic P were investigated with seven acid mineral soil samples incubated with KOH solutions of various concentrations. The results were compared with the analytical data obtained from three soil samples incubated in a prolonged liming experiment. The resin extraction method proved more effective than the water extraction method. The amounts of P desorbed by both methods seemed to increase exponentially as the pH in the soil suspensions rose. The factors involved were discussed. On the basis of fractionation analyses P reacting to changes in the pH and participating in desorption processes was supposed to originate from secondary NH4F and NaOH soluble reserves. In general, as the acidity decreased NH4F-P increased at the expense of NaOH-P. In heavily limed gyttja soil also H2SO4-P increased. This was possibly induced by the precipitation of mobilized P as a Ca compound. The significance of pH in the extractability of soil P seemed somewhat to lessen as the amount of secondary P increased. The results were in accordance with the conception that liming improves the availability of inorganic P to plants and reduces the need for P fertilization. However, increasing of the soil pH involves the risk that P is more easily desorbed to the recipient water by the eroded soil material carried into the watercourse. Therefore, intensive liming is not recommendable close to the shoreline. Further, it should be taken into account that liming of lakes may also result in eutrophication as desorption of sedimentary inorganic P is enhanced.


Author(s):  
Amir Hossein Baghaie

Introduction: Soil remediation is one of the most important fields in environmental studies. This study was conducted to investigate the effect of indole-3-acetic acid (IAA) and humic acid (HA) on increasing the bio-degradation of diesel oil in soil polluted with (lead) Pb and cadmium (Cd). Materials and Methods: Treatments included foliar application of IAA (0 (control) and 30 ppm) and soil application of HA (0 (control) and 200 mg/kg soil) in the soil contaminated with Cd (0 (control), 10 and 15 mg/kg soil), Pb (0 (control) and 1600 mg/kg soil), and diesel oil (0 (control), and 8% (W/W)). The sunflower was planted in all soil samples. The plants were harvested after 70 days and Pb and Cd concentrations of plants were measured using Atomic Absorption Spectroscopy. Results: Foliar application of IAA at the rate of 30 mg/l significantly increased the Cd and Pb phytoremediation by 14.8% and 13.4%, respectively. For HA application, it was increased by 11.3% and 10.2%, respectively.  A significant increase was found in degradation percentage of diesel oil in soil by 12.6%, when the soil was treated with 200 mg HA/kg soil. Conclusion: It can be concluded that application of organic amendments such as IAA or HA can be a suitable way for increasing plant growth and increasing plant phytoremediation efficiency, especially in the soil contaminated with diesel oil. However, the phytoremediation efficiency is dependent on the plant physiology and the type of soil pollution that should be considered.


2015 ◽  
Vol 39 (4) ◽  
pp. 1068-1078 ◽  
Author(s):  
José Alberto Ferreira Cardoso ◽  
Augusto Miguel Nascimento Lima ◽  
Tony Jarbas Ferreira Cunha ◽  
Marcos Sales Rodrigues ◽  
Luis Carlos Hernani ◽  
...  

Improper land use has lead to deterioration and depletion of natural resources, as well as a significant decline in agricultural production, due to decreased soil quality. Removal of native vegetation to make way for agricultural crops, often managed inadequately, results in soil disruption, decreased nutrient availability, and decomposition of soil organic matter, making sustainable agricultural production unviable. Thus, the aim of the present study was to evaluate the impact of growing irrigated mango (over a 20 year period) on the organic carbon (OC) stocks and on the fractions of soil organic matter (SOM) in relation to the native caatinga (xeric shrubland) vegetation in the Lower São Francisco Valley region, Brazil. The study was carried out on the Boa Esperança Farm located in Petrolina, Pernambuco, Brazil. In areas under irrigated mango and native caatinga, soil samples were collected at the 0-10 and 10-20 cm depths. After preparing the soil samples, we determined the OC stocks, carbon of humic substances (fulvic acid fractions, humic acid fractions, and humin fractions), and the light and heavy SOM fractions. Growing irrigated mango resulted in higher OC stocks; higher C stocks in the fulvic acid, humic acid, and humin fractions; and higher C stocks in the heavy and light SOM fraction in comparison to nativecaatinga, especially in the uppermost soil layer.


Soil Science ◽  
2002 ◽  
Vol 167 (1) ◽  
pp. 25-34
Author(s):  
Jesper Gamst ◽  
Martin Hesselsøe ◽  
Torben Olesen ◽  
Peter Roslev ◽  
Dennis E. Rolston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document