Increased Seebeck Coefficient and Decreased Lattice Thermal Conductivity in Grain-Size-Controlled p-Type PbTe–MgTe System

2018 ◽  
Vol 1 (11) ◽  
pp. 6586-6592 ◽  
Author(s):  
Preeyakarn Eaksuwanchai ◽  
Sora-at Tanusilp ◽  
Priyanka Jood ◽  
Michihiro Ohta ◽  
Ken Kurosaki
2013 ◽  
Vol 06 (05) ◽  
pp. 1340006 ◽  
Author(s):  
JINGSHU XU ◽  
CHENGUANG FU ◽  
JIAN XIE ◽  
XINBING ZHAO ◽  
TIEJUN ZHU

The p-type skutterudite compounds of ( Pr 0.25 Nd 0.75)x Fe 3 CoSb 12 (x = 0.67–0.78) have been successfully synthesized by levitation melting followed by annealing and spark plasma sintering. The thermoelectric properties have been characterized by the measurements of Seebeck coefficient, electrical conductivity and thermal conductivity in the temperature range from 300 K to 850 K. The improvement in the thermoelectric properties was realized due to the reduction in the lattice thermal conductivity when the voids were partially filled by Pr 0.25 Nd 0.75. The maximum ZT value of ~ 0.83 for ( Pr 0.25 Nd 0.75)0.76 Fe 3 CoSb 12 was obtained at 700 K.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2006 ◽  
Vol 929 ◽  
Author(s):  
Bangke Zheng ◽  
S. Budak ◽  
C. Muntele ◽  
Z. Xiao ◽  
S. Celaschi ◽  
...  

ABSTRACTWe made p-type nanoscale super lattice thermoelectric cooling devices which consist of multiple periodic layers of Si1−x Gex / Si, The thickness of each layer ranges between 10 and 50 nm. The super lattice was bombarded by 5 MeV Si ion with different fluencies aiming to form nano-cluster quantum dot structures. We estimated the thermo-electric efficiency of the so fabricated devices, measuring the thin film cross plane thermal conductivity by the 3rd harmonic method, measuring the cross plane Seebeck coefficient, and finally measuring the cross plane electric conductivity before and after ion bombardment. As predicted, the thermo-electric Figure of Merit of the films increases with increasing Si ion fluencies. In addition to the effect of quantum well confinement of the phonon transmission, the nano-scale crystal quantum dots produced by the incident Si beam further adversely affects the thermal conductivity by absorbing and dissipating phonon along the lattice, and therefore further reduces the cross plane thermal conductivity, This process increases the electron density of state therefore increasing Seebeck coefficient, and the electric conductivity.


2021 ◽  
Vol 871 ◽  
pp. 203-207
Author(s):  
Jian Liu

In this work, we use first principles DFT calculations, anharmonic phonon scatter theory and Boltzmann transport method, to predict a comprehensive study on the thermoelectric properties as electronic and phonon transport of layered LaSe2 crystal. The flat-and-dispersive type band structure of LaSe2 crystal offers a high power factor. In the other hand, low lattice thermal conductivity is revealed in LaSe2 semiconductor, combined with its high power factor, the LaSe2 crystal is considered a promising thermoelectric material. It is demonstrated that p-type LaSe2 could be optimized to exhibit outstanding thermoelectric performance with a maximum ZT value of 1.41 at 1100K. Explored by density functional theory calculations, the high ZT value is due to its high Seebeck coefficient S, high electrical conductivity, and low lattice thermal conductivity .


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Pornsiri Wanarattikan ◽  
Piya Jitthammapirom ◽  
Rachsak Sakdanuphab ◽  
Aparporn Sakulkalavek

In this work, stoichiometric Sb2Te3 thin films with various thicknesses were deposited on a flexible substrate using RF magnetron sputtering. The grain size and thickness effects on the thermoelectric properties, such as the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and thermal conductivity (k), were investigated. The results show that the grain size was directly related to film thickness. As the film thickness increased, the grain size also increased. The Seebeck coefficient and electrical conductivity corresponded to the grain size of the films. The mean free path of carriers increases as the grain size increases, resulting in a decrease in the Seebeck coefficient and increase in electrical conductivity. Electrical conductivity strongly affects the temperature dependence of PF which results in the highest value of 7.5 × 10−4 W/m·K2 at 250°C for film thickness thicker than 1 µm. In the thermal conductivity mechanism, film thickness affects the dominance of phonons or carriers. For film thicknesses less than 1 µm, the behaviour of the phonons is dominant, while both are dominant for film thicknesses greater than 1 µm. Control of the grain size and film thickness is thus critical for controlling the performance of Sb2Te3 thin films.


2019 ◽  
Vol 64 (14) ◽  
pp. 1024-1030 ◽  
Author(s):  
Tiezheng Fu ◽  
Jiazhan Xin ◽  
Tiejun Zhu ◽  
Jiajun Shen ◽  
Teng Fang ◽  
...  

2001 ◽  
Vol 16 (12) ◽  
pp. 3343-3346 ◽  
Author(s):  
X. F. Tang ◽  
L. M. Zhang ◽  
R. Z. Yuan ◽  
L. D. Chen ◽  
T. Goto ◽  
...  

Effects of Ba filling fraction and Ni content on the thermoelectric properties of n-type BayNixCo4−xSb12 (x = 0−0.1, y = 0−0.4) were investigated at temperature range of 300 to 900 K. Thermal conductivity decreased with increasing Ba filling fraction and temperature. When y was fixed at 0.3, thermal conductivity decreased with increasing Ni content and reached a minimum value at about x = 0.05. Lattice thermal conductivity decreased with increasing Ni content, monotonously (y ≤ 0.1). Electron concentration and electrical conductivity increased with increasing Ba filling fraction and Ni content. Seebeck coefficient increased with increasing temperature and decreased with increasing Ba filling fraction and Ni content. The maximum ZT value of 1.25 was obtained at about 900 K for n-type Ba0.3Ni0.05Co3.95Sb12.


2012 ◽  
Vol 512-515 ◽  
pp. 1651-1654 ◽  
Author(s):  
Yu Kun Xiao ◽  
Zhi Xiang Li ◽  
Jun Jiang ◽  
Sheng Hui Yang ◽  
Ting Zhang ◽  
...  

P-type BiSbTe/RuO2 composite was fabricated using a combined process of melting and spark plasma sintering. The XRD patterns showed that RuO2 reacted with the matrix for the RuO2 content of 1.0 wt% and 4.0 wt% samples. The measured thermoelectric properties showed that the highest electrical conductivity was obtained for the sample with 2.0 wt% RuO2. The power factor (α2σ/κ) decreased with the increase of RuO2 below 450 K. The lattice thermal conductivity was lower than that of BiSbTe over the whole temperature range for BiSbTe/2.0 wt% RuO2.


2015 ◽  
Vol 3 (16) ◽  
pp. 8643-8649 ◽  
Author(s):  
Peng-an Zong ◽  
Xihong Chen ◽  
Yanwu Zhu ◽  
Ziwei Liu ◽  
Yi Zeng ◽  
...  

The construction of a 3D-rGO network architecture dramatically reduced the lattice thermal conductivity and simultaneously enhanced the Seebeck coefficient, leading to a maximum ZT of 1.51.


2014 ◽  
Vol 2 (48) ◽  
pp. 20849-20854 ◽  
Author(s):  
Gangjian Tan ◽  
Fengyuan Shi ◽  
Hui Sun ◽  
Li-Dong Zhao ◽  
Ctirad Uher ◽  
...  

SnTe–AgBiTe2 is not only a solid solution but a nanocomposite. The alloying effect coupled with intense interface scattering leads to considerably decreased lattice thermal conductivity. Bi is much more powerful in neutralizing holes than Sb, giving rise to a much higher Seebeck coefficient. A high ZT was then obtained.


Sign in / Sign up

Export Citation Format

Share Document