scholarly journals Reaction between Graphene Oxide and Intracellular Glutathione Affects Cell Viability and Proliferation

2021 ◽  
Vol 13 (3) ◽  
pp. 3528-3535
Author(s):  
Baojin Ma ◽  
Shi Guo ◽  
Yuta Nishina ◽  
Alberto Bianco
2D Materials ◽  
2021 ◽  
Author(s):  
Giacomo Reina ◽  
Amalia Ruiz ◽  
Barbara Richichi ◽  
Giacomo Biagiotti ◽  
Gina Elena Giacomoazzo ◽  
...  

Abstract Boron dipyrromethene derivates (BODIPYs) are promising photosensitisers (PSs) for cancer treatment using photodynamic therapy (PDT). This study investigates the functionalisation of graphene oxide (GO) with a BODIPY derivate for glutathione (GSH) depletion and PDT. The functionalisation of GO with a 3,5-dichloro-8-(4-boronophenyl) BODIPY via a diol derivatisation with the phenyl boronic acid moiety at the meso position of the BODIPY core, allowed to preserve the intrinsic properties of GO. We demonstrated that both chlorine atoms were substituted by GSH in the presence of glutathione transferase (GST), inducing a relevant bathochromic shift in the absorption/emission features and thus generating the active PS. Ex vitro assessment using cell lysates containing cytoplasmatic GST revealed the intracellular catalytic mechanism for the nucleophilic substitution of the GO-BODIPY adduct with GSH. Confocal microscopy studies showed important differences in the cellular uptake of free BODIPY and GO-BODIPY and revealed the coexistence of GO-BODIPY, GO-BODIPY-GS, and GO-BODIPY-GS2 species inside vesicles and in the cytoplasm of the cells after 24 h of incubation. In vitro biocompatibility and safety of GO and GO-BODIPY were evaluated in 2D and 3D models of prostate adenocarcinoma cells (PC-3), where no toxicity was observed up to 100 µg/mL of GO/GO-BODIPY in all treated groups 24 h post-treatment (cell viability > 90%). Only a slight decrease to 80% at 100 µg/mL was observed after 48 h of incubation. We demonstrated the efficacy of a GO adduct containing an α-chlorine-substituted BODIPY for the simultaneous depletion of intracellular GSH and the photogeneration of reactive oxygen species using a halogen white light source (5.4 mW/cm2) with a maximum in the range of 500-800 nm, which significantly reduced cell viability (< 50%) after irradiation. Our study provides a new vision on how to apply BODIPY derivates and potentiate the toxicity of PDT in prostate and other types of cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
N. L. V. Carreño ◽  
A. M. Barbosa ◽  
V. C. Duarte ◽  
C. F. Correa ◽  
C. Ferrúa ◽  
...  

Silver-functionalized reduced graphene oxide (Ag-rGO) nanosheets were prepared by single chemical and thermal processes, with very low concentration of silver. The resulting carbon framework consists of reduced graphene oxide (rGO) sheets or 3D networks, decorated with anchored silver nanoparticles. The Ag-rGO nanosheets were dispersed into a polymer matrix and the composites evaluated for use as biological scaffolds. The rGO material in poly(dimethylsiloxane) (PDMS) has been tested for antimicrobial activity against Gram-positiveStaphylococcus aureus(S. Aureus) bacteria, after exposure times of 24 and 120 hours, as well as in the determination of cell viability on cultures of fibroblast cells (NIH/3T3). Using 1 mL of Ag-rGO in PDMS the antibacterial effectiveness againstStaphylococcus aureuswas limited, showing an increased amount of Colony Forming Units (CFU), after 24 hours of contact. In the cell viability assay, after 48 hours of contact, the group of 1 mL of Ag-rGO with PDMS was the only group that increased cell viability when compared to the control group. In this context, it is believed these behaviors are due to the increase in cell adhesion capacity promoted by the rGO. Thus, the Ag-rGO/PDMS hybrid nanocomposite films can be used as scaffolds for tissue engineering, as they limit antimicrobial activity.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 109150-109156 ◽  
Author(s):  
Sakthivel Nagarajan ◽  
Céline Pochat-Bohatier ◽  
Catherine Teyssier ◽  
Sébastien Balme ◽  
Philippe Miele ◽  
...  

2D graphene oxide (GO) is used to enhance the mechanical properties of gelatin electrospun fibers. The GO does not show any significant influence on cell viability and cell attachment even though the expression of osteoblast gene is affected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad M. Ramli ◽  
A. S. Rosman ◽  
N. S. Mazlan ◽  
M. F. Ahmad ◽  
D. S. C. Halin ◽  
...  

AbstractBreast cancer is one of the most reported cancers that can lead to death. Despite the advances in diagnosis and treatment procedures, the possibility of cancer recurrences is still high in many cases. With that in consideration, researchers from all over the world are showing interest in the unique features of Graphene oxide (GO), such as its excellent and versatile physicochemical properties, to explore further its potential and benefits towards breast cancer cell treatment. In this study, the cell viability and electrical response of GO, in terms of resistivity and impedance towards the breast cancer cells (MCF7) and normal breast cells (MCF10a), were investigated by varying the pH and concentration of GO. Firstly, the numbers of MCF7 and MCF10a were measured after being treated with GO for 24 and 48 h. Next, the electrical responses of these cells were evaluated by using interdigitated gold electrodes (IDEs) that are connected to an LCR meter. Based on the results obtained, as the pH of GO increased from pH 5 to pH 7, the number of viable MCF7 cells decreased while the number of viable MCF10a slightly increased after the incubation period of 48 h. Similarly, the MCF7 also experienced higher cytotoxicity effects when treated with GO concentrations of more than 25 µg/mL. The findings from the electrical characterization of the cells observed that the number of viable cells has corresponded to the impedance of the cells. The electrical impedance of MCF7 decreased as the number of highly insulating viable cell membranes decreased. But in contrast, the electrical impedance of MCF10a increased as the number of highly insulating viable cell membranes increased. Hence, it can be deduced that the GO with higher pH and concentration influence the MCF7 cancer cell line and MCF10a normal breast cell.


Author(s):  
Seung-Min Lee ◽  
Kyung-Hyeon Yoo ◽  
Seog-Young Yoon ◽  
In-Ryoung Kim ◽  
Bong-Soo Park ◽  
...  

White spot lesions (WSLs), a side effect of orthodontic treatment, can result in reversible and unaesthetic results. Graphene oxide (GO) with a bioactive glass (BAG) mixture(BAG@GO) was added to Low Viscosity Transbond XT(LV) in a ratio of 1, 3, 5%. The composite&rsquo;s characterization and its physical and biological properties were verified with scanning electron microscopy(SEM) and X-ray diffraction(XRD); its microhardness, shear bond stress (SBS), cell viability, and adhesive remnant index (ARI) were also assessed. Efficiency in reducing WSL was evaluated using antibacterial activity of S. mutans. Anti-demineralization was analyzed using a cycle of the acid-base solution. Adhesives with 3 or 5 wt.% of BAG@GO showed significant increase in microhardness compared with LV. The sample and LV groups showed no significant differences in SBS or ARI. The cell viability test confirmed that none of the sample groups showed higher toxicity compared to the LV group. Antibacterial activity was higher in the 48-hour group than in the 24-hour group; the 48-hour test showed that BAG@GO had a high antibacterial effect, which was more pronounced in 5 wt.% of BAG@GO. Anti-demineralization effect was higher in the BAG@GO-group than in the LV-group; the higher the BAG@GO concentration, the higher the anti-demineralization effect.


2021 ◽  
Author(s):  
Muhammad M. Ramli ◽  
Anis Rosman ◽  
Nur Mazlan ◽  
Mohd Ahmad ◽  
Dewi Che Halin ◽  
...  

Abstract Breast cancer is one of the most reported cancers that can lead to death. Despite the advances in diagnosis and treatment procedures, the possibility of cancer recurrences is still high in many cases. With that in consideration, researchers from all over the world are showing interest in the unique features of Graphene oxide (GO), such as its excellent and versatile physicochemical properties, to explore further its potential and benefits towards breast cancer cell treatment. In this study, the cell viability and electrical response of GO, in terms of resistivity and impedance towards the breast cancer cells (MCF7) and normal breast cells (MCF10a), were investigated by varying the pH and concentration of GO. Firstly, the numbers of MCF7 and MCF10a were measured after being treated with GO for 24 and 48 hours. Next, the electrical responses of these cells were evaluated by using interdigitated electrodes (IDEs) gold electrodes that are connected to an E4980 20 Hz – 2 MHz Precision LCR meter. Based on the results obtained, as the pH of GO increased from pH 5 to pH 7, the number of viable MCF7 cells decreased while the number of viable MCF10a slightly increased after the incubation period of 48 hours. Similarly, the MCF7 also experienced higher cytotoxicity effects when treated with a GO concentration of more than 25 μg/mL. The findings from the electrical characterization of the cells observed that the number of viable cells has corresponded to the impedance of the cells. The electrical impedance of MCF7 decreased as the number of highly insulating viable cells membrane decreased, but in contrast, the electrical impedance of MCF10a increased as the number of highly insulating viable cells membrane increased. Hence, it can be deduced that the GO with higher pH and concentration impacts the MCF7 cancer cell line and MCF10a normal breast cell.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 428 ◽  
Author(s):  
Carolina Angulo-Pineda ◽  
Kasama Srirussamee ◽  
Patricia Palma ◽  
Victor M. Fuenzalida ◽  
Sarah H. Cartmell ◽  
...  

Applying electrical stimulation (ES) could affect different cellular mechanisms, thereby producing a bactericidal effect and an increase in human cell viability. Despite its relevance, this bioelectric effect has been barely reported in percolated conductive biopolymers. In this context, electroactive polycaprolactone (PCL) scaffolds with conductive Thermally Reduced Graphene Oxide (TrGO) nanoparticles were obtained by a 3D printing method. Under direct current (DC) along the percolated scaffolds, a strong antibacterial effect was observed, which completely eradicated S. aureus on the surface of scaffolds. Notably, the same ES regime also produced a four-fold increase in the viability of human mesenchymal stem cells attached to the 3D conductive PCL/TrGO scaffold compared with the pure PCL scaffold. These results have widened the design of novel electroactive composite polymers that could both eliminate the bacteria adhered to the scaffold and increase human cell viability, which have great potential in tissue engineering applications.


2019 ◽  
Vol 139 (5) ◽  
pp. S138
Author(s):  
N. Sato ◽  
S. Yoshimoto ◽  
N. Kohara ◽  
K. Eguchi ◽  
Y. Tsuruta ◽  
...  

2014 ◽  
Vol 293 ◽  
pp. 124-131 ◽  
Author(s):  
Mohana Marimuthu ◽  
Murugan Veerapandian ◽  
Subramaniyan Ramasundaram ◽  
Seok Won Hong ◽  
P. Sudhagar ◽  
...  

NANO ◽  
2015 ◽  
Vol 10 (07) ◽  
pp. 1550094
Author(s):  
Jing Wu ◽  
Yang Tang ◽  
Zengliang Shi ◽  
Zhengshan Tian ◽  
Junhua Wang ◽  
...  

Viability of cancer cell is an important indicator of physiological state and function of cells, which can be effected by the change of pH in the medium solution, due to the increase of carbon oxide and lactic acid caused by respiration. Although many methods have been developed to detect the viability of cells, mostly based on cytochemical staining and polymerase chain reaction (PCR) technology are time consuming. In this paper, an electronic device was made by thermal reduced graphene oxide (RGO) for detection of cancer cell viability in real-time. This electronic device could be used to monitor the metabolic activity and viability of cancer cells based on the change in pH value. As the pH decreases, colon cancer cells loose viability and the current decreases. This RGO device is simple, sensitive and label-free and could serve as a platform for detection of cells and drug testing.


Sign in / Sign up

Export Citation Format

Share Document