Electrode Potential Regulation of Carbon Fiber Based on Galvanic Coupling and Its Application in Electrochemical Grafting

Author(s):  
Ruyu Ruan ◽  
Yu Wang ◽  
Changtong Hu ◽  
Aijun Gao ◽  
Lianghua Xu
2000 ◽  
Vol 16 (5) ◽  
pp. 364-373 ◽  
Author(s):  
Y Fovet ◽  
L Pourreyron ◽  
J.-Y Gal

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 651 ◽  
Author(s):  
Stanley Ofoegbu ◽  
Mário Ferreira ◽  
Mikhail Zheludkevich

Carbon is used as a reinforcing phase in carbon-fiber reinforced polymer composites employed in aeronautical and other technological applications. Under polarization in aqueous media, which can occur on galvanic coupling of carbon-fiber reinforced polymers (CFRP) with metals in multi-material structures, degradation of the composite occurs. These degradative processes are intimately linked with the electrically conductive nature and surface chemistry of carbon. This review highlights the potential corrosion challenges in multi-material combinations containing carbon-fiber reinforced polymers, the surface chemistry of carbon, its plausible effects on the electrochemical activity of carbon, and consequently the degradation processes on carbon-fiber reinforced polymers. The implications of the emerging use of conductive nano-fillers (carbon nanotubes and carbon nanofibers) in the modification of CFRPs on galvanically stimulated degradation of CFRP is accentuated. The problem of galvanic coupling of CFRP with selected metals is set into perspective, and insights on potential methods for mitigation and monitoring the degradative processes in these composites are highlighted.


Author(s):  
Hong-Ming Lin ◽  
C. H. Liu ◽  
R. F. Lee

Polyetheretherketone (PEEK) is a crystallizable thermoplastic used as composite matrix materials in application which requires high yield stress, high toughness, long term high temperature service, and resistance to solvent and radiation. There have been several reports on the crystallization behavior of neat PEEK and of CF/PEEK composite. Other reports discussed the effects of crystallization on the mechanical properties of PEEK and CF/PEEK composites. However, these reports were all concerned with the crystallization or melting processes at or close to atmospheric pressure. Thus, the effects of high pressure on the crystallization of CF/PEEK will be examined in this study.The continuous carbon fiber reinforced PEEK (CF/PEEK) laminate composite with 68 wt.% of fibers was obtained from Imperial Chemical Industry (ICI). For the high pressure experiments, HIP was used to keep these samples under 1000, 1500 or 2000 atm. Then the samples were slowly cooled from 420 °C to 60 °C in the cooling rate about 1 - 2 degree per minute to induce high pressure crystallization. After the high pressure treatment, the samples were scanned in regular DSC to study the crystallinity and the melting temperature. Following the regular polishing, etching, and gold coating of the sample surface, the scanning electron microscope (SEM) was used to image the microstructure of the crystals. Also the samples about 25mmx5mmx3mm were prepared for the 3-point bending tests.


2020 ◽  
Vol 8 (32) ◽  
pp. 16661-16668
Author(s):  
Huayao Tu ◽  
Shouzhi Wang ◽  
Hehe Jiang ◽  
Zhenyan Liang ◽  
Dong Shi ◽  
...  

The carbon fiber/metal oxide/metal oxynitride layer sandwich structure is constructed in the electrode to form a mini-plate capacitor. High dielectric constant metal oxides act as dielectric to increase their capacitance.


1981 ◽  
Vol 78 ◽  
pp. 373-375
Author(s):  
Amar Nath Nigam ◽  
Ratna Rani
Keyword(s):  

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-279-Pr3-286
Author(s):  
X. Dabou ◽  
P. Samaras ◽  
G. P. Sakellaropoulos

Sign in / Sign up

Export Citation Format

Share Document