scholarly journals Multistage Chemical Heating for Instrument-Free Biosensing

2018 ◽  
Vol 10 (39) ◽  
pp. 33043-33048 ◽  
Author(s):  
John P. Goertz ◽  
Kenya M. Colvin ◽  
Andrew B. Lippe ◽  
John L. Daristotle ◽  
Peter Kofinas ◽  
...  
Keyword(s):  
2012 ◽  
Vol 8 (S291) ◽  
pp. 586-588
Author(s):  
Xia Zhou ◽  
Miao Kang ◽  
Na Wang

AbstractThe effect of magnetic field decay on the chemical heating and thermal evolution of neutron stars is discussed. Our main goal is to study how chemical heating mechanisms and thermal evolution are changed by field decay and how magnetic field decay is modified by the thermal evolution. We show that the effect of chemical heating is suppressed by the star spin-down through decaying magnetic field at a later stage; magnetic field decay is delayed significantly relative to stars cooling without heating mechanisms; compared to typical chemical heating, the decay of the magnetic field can even cause the temperature to turn down at a later stage.


1997 ◽  
Vol 35 (8) ◽  
pp. 209-215 ◽  
Author(s):  
Shuzo Tanaka ◽  
Toshio Kobayashi ◽  
Ken-ichi Kamiyama ◽  
Ma. Lolita N. Signey Bildan

Effects of pretreatment on the anaerobic digestion of waste activated sludge (WAS) were investigated in terms of VSS solubilization and methane production by batch experiments. The methods of pretreatment studied are NaOH addition (chemical), heating (thermal) and heating with NaOH addition (thermochemical) to the domestic WAS and to the combined WAS from domestic, commercial and industrial wastewaters. The thermochemical pretreatment gave the best result among three methods in the combined WAS, i.e., the VSS was solubilized by 40-50% and the methane production increased by more than 200% over the control when the WAS was heated at 130°C for 5 minutes with the dose 0.3 g NaOH/g VSS. In the domestic WAS, the VSS solubilization rate was 70-80% but the increase of the methane production was about 30% after thermochemically pretreated. The domestic WAS consists of 41% protein, 25% lipid and 14% carbohydrate on COD basis, and the solubilization rate of protein, which is the largest constituent of the WAS, was 63% in the thermochemical pretreatment. Although the effect of the thermochemical pretreatment on the methane production was higher to the combined WAS than to the domestic WAS, the methane production rate was 21.9 ml CH4/g VSSWAS·day in the domestic WAS and 12.8 ml CH4/g VSSWAS·day in the combined WAS.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31432 ◽  
Author(s):  
Kelly A. Curtis ◽  
Donna L. Rudolph ◽  
Irene Nejad ◽  
Jered Singleton ◽  
Andy Beddoe ◽  
...  

1969 ◽  
Author(s):  
Sami Atallah ◽  
Donald S. Allan ◽  
Jr. Comstock ◽  
Bakerjian Daniel F. ◽  
B.

2019 ◽  
Vol 632 ◽  
pp. A44 ◽  
Author(s):  
W. F. Thi ◽  
G. Lesur ◽  
P. Woitke ◽  
I. Kamp ◽  
Ch. Rab ◽  
...  

Context. Disks around pre-main-sequence stars evolve over time by turbulent viscous spreading. The main contender to explain the strength of the turbulence is the magnetorotational instability model, whose efficiency depends on the disk ionization fraction. Aims. Our aim is to compute self-consistently the chemistry including polycyclic aromatic hydrocarbon (PAH) charge chemistry, the grain charging, and an estimate of an effective value of the turbulence α parameter in order to find observational signatures of disk turbulence. Methods. We introduced PAH and grain charging physics and their interplay with other gas-phase reactions in the physico-chemical code PRODIMO. Non-ideal magnetohydrodynamics effects such as ohmic and ambipolar diffusion are parametrized to derive an effective value for the turbulent parameter αeff. We explored the effects of turbulence heating and line broadening on CO isotopologue submillimeter lines. Results. The spatial distribution of αeff depends on various unconstrained disk parameters such as the magnetic parameter βmag or the cosmic ray density distribution inside the protoplanetary disk s. The inner disk midplane shows the presence of the so-called dead zone where the turbulence is almost inexistent. The disk is heated mostly by thermal accommodation on dust grains in the dead zone, by viscous heating outside the dead zone up to a few hundred astronomical units, and by chemical heating in the outer disk. The CO rotational lines probe the warm molecular disk layers where the turbulence is at its maximum. However, the effect of turbulence on the CO line profiles is minimal and difficult to distinguish from the thermal broadening. Conclusions. Viscous heating of the gas in the disk midplane outside the dead zone is efficient. The determination of α from CO rotational line observations alone is challenging.


2005 ◽  
Vol 12 (5) ◽  
pp. 691-705 ◽  
Author(s):  
G. R. Sonnemann ◽  
M. Grygalashvyly

Abstract. The integration of the photochemical system of the upper mesosphere/mesopause region brought evidence that the system is able to respond in a nonlinear manner under certain conditions. Under the action of the diurnally-periodic insolation, the system creates subharmonic oscillations or chaos if disregarding strong diffusion, and under special conditions it possesses multiple solutions. The models used in the past were simplified and idealized in view of the number of dimensions and the consideration of the full dynamics. On the basis of our global 3-D-model of the dynamics and chemistry of the middle atmosphere (COMMA-IAP), we also found a nonlinear response in the photochemistry under realistic conditions. The model under consideration is not yet self-consistent, but the chemical model uses the dynamical fields calculated by the dynamic model. From our calculations we got period-2 oscillations of the photochemical system within confined latitudinal regions around the solstices but not during the equinoxes. The consequence of the period-2 oscillation of the chemical active minor constituents is that a marked two-day variation of the chemical heating rates is an important thermal pumping mechanism. We discuss these findings particularly in terms of the influence of realistic dynamics on the creation of nonlinear effects.


2018 ◽  
Vol 478 (2) ◽  
pp. 2267-2273
Author(s):  
Wei Wei ◽  
Xi-Wei Liu ◽  
Xiao-Ping Zheng

Author(s):  
Xiao Fu Wang ◽  
Wen Qiang Chen ◽  
Jian Li Guo ◽  
Cheng Peng ◽  
Xiao Yun Chen ◽  
...  

The nucleic acid-based technique has been widely utilized in many fields including for on-site detection. However, traditional molecular detection techniques encounter limitations like relying on instruments, time consuming or complex operation, and cannot meet the demands of on-site testing. In this study, a rapid DNA extraction method (RDEM), recombinase aided amplification (RAA), and chemical heating packet (CHP) are integrated and termed as RRC platform for on-site detection of nucleic acid. For demonstration purposes, SHZD32-1 (a new transgenic soybean line from China) was detected using the novel platform to demonstrate its feasibility and capability for on-site detection. Using the RDEM, high-quality DNA appropriate for molecular detection was quickly extracted in 3–5 min. The heat energy generated by CHP was met the temperature requirements of RAA. Using the RRC platform, the whole detection process can be accomplished within only 30 min, and the results can be visually detected with glasses under blue light. No special or expensive instrument was needed for the detection process. This study provides a novel approach for on-site detection of nucleic acids besides providing valuable insight on related future research.


1974 ◽  
Vol 192 ◽  
pp. 597 ◽  
Author(s):  
A. Dalgarno ◽  
M. Oppenheimer

Sign in / Sign up

Export Citation Format

Share Document