Strong, Low-Density Nanocomposites by Chemical Vapor Deposition and Polymerization of Cyanoacrylates on Aminated Silica Aerogels

2009 ◽  
Vol 1 (7) ◽  
pp. 1364-1369 ◽  
Author(s):  
Dylan J. Boday ◽  
Robert J. Stover ◽  
Beatrice Muriithi ◽  
Michael W. Keller ◽  
Jason T. Wertz ◽  
...  
2001 ◽  
Vol 16 (2) ◽  
pp. 621-626 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Toru Aoki ◽  
Yoshinori Hatanaka ◽  
Dariusz Korzec ◽  
Jurgen Engemann

The hydrophilic properties of amorphous TiOx films prepared by different methods, e.g., radio frequency (rf) sputtering and plasma-enhanced chemical vapor deposition (PECVD), were studied. It was found that the hydrophilicity strongly depends on the film structure. The best hydrophilicity was realized with the PECVD amorphous film having distorted Ti–O bonds due to a large amount of OH groups. These characteristics of the PECVD amorphous film suggest that such a low-density film including distorted Ti–O bonds could increase the photoenhancement efficiency by ultraviolet radiation. This reason is also supported from the results that a low-density rf sputtered film presented a higher hydrophilicity compared to a high-density radio frequency sputtered film. Furthermore, both electrical and chemical effects of OH groups will also contribute to the good hydrophilicity of the PECVD film.


2001 ◽  
Vol 16 (12) ◽  
pp. 3335-3338 ◽  
Author(s):  
E. Todd Ryan ◽  
Jeremy Martin ◽  
Kurt Junker ◽  
Jeff Wetzel ◽  
David W. Gidley ◽  
...  

Most organosilicate glass (OSG), low dielectric constant (low-κ) films contain Si–R groups, where R is an organic moiety such as −CH3. The organic component is susceptible to the chemically reactive plasmas used to deposit cap layers, etch patterns, and ash photoresist. This study compares a spin-on, mesoporous OSG film with a completely connected pore structure to both its nonmesoporous counterpart and to another low-density OSG film deposited by plasma-enhanced chemical vapor deposition. The results show that the film with connected pores was much more susceptible to integration damage than were the nonmesoporous OSG films.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Dylan J. Boday ◽  
Douglas A. Loy ◽  
Kimberley A. DeFriend ◽  
Kennard V. Wilson ◽  
David Coder

ABSTRACTAerogels were structurally modified using chemical vapor deposition (CVD) of cyanoacrylate monomers to afford polycyanoacrylate-aerogel nanocomposites. Silica aerogels are low density, high surface area materials whose applications are limited by their fragility. Cyanoacrylate CVD allowed us to deposit a film of organic polymer throughout fragile porous monoliths within hours. Our experiments have shown that polymerization of the cyanoacrylate monomers was initiated by the adsorbed water on the surface of the silica permitting the nanocomposites structures to be formed with little or no sample preparation. We found that the strength of the polycyanoacrylate-aerogel nanocomposites increased thirty two-fold over the untreated aerogels with only a three-fold increase in density and an eight-fold decrease in surface area. Along with the improvement in mechanical properties, the aerogels became less hydrophilic than un-modified aerogels. Polycyanoacrylate-coated aerogels were placed directly into water and did not suffer catastrophic fragmentation as observed with un-modified silica aerogels.


2015 ◽  
Vol 13 (0) ◽  
pp. 404-409 ◽  
Author(s):  
Seiya Suzuki ◽  
Kana Kiyosumi ◽  
Takashi Nagamori ◽  
Kei Tanaka ◽  
Masamichi Yoshimura

Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


Sign in / Sign up

Export Citation Format

Share Document