Poly(ethylene oxide) Grafted with Short Polyethylenimine Gives DNA Polyplexes with Superior Colloidal Stability, Low Cytotoxicity, and Potent In Vitro Gene Transfection under Serum Conditions

2012 ◽  
Vol 13 (3) ◽  
pp. 881-888 ◽  
Author(s):  
Meng Zheng ◽  
Zhihong Zhong ◽  
Lei Zhou ◽  
Fenghua Meng ◽  
Rui Peng ◽  
...  
1989 ◽  
Vol 12 (6) ◽  
pp. 390-394 ◽  
Author(s):  
E. Brinkman ◽  
A. Poot ◽  
T. Beugeling ◽  
L. Van Der Does ◽  
A. Bantjes

Pellethane 2363 80A catheters were modified with poly(ethylene oxide) in order to improve their blood compatibility. Contact angle measurements showed that Pellethane 2363 80A surfaces had increased wettability after this modification. The results of in vitro blood compatibility tests showed that surface modification with poly(ethylene oxide) resulted in a five-fold reduction of platelet deposition. Activation of coagulation was not affected.


2016 ◽  
Vol 4 (4) ◽  
pp. 726-742 ◽  
Author(s):  
Poornima Dubey ◽  
P. Gopinath

An intrinsic property of many anticancer drugs including niclosamide is poor water solubility, which hindered their translation from laboratory to clinics.


Biomaterials ◽  
1995 ◽  
Vol 16 (6) ◽  
pp. 427-439 ◽  
Author(s):  
Garry R. Harper ◽  
Stanley S. Davis ◽  
Martyn C. Davies ◽  
Maria E. Norman ◽  
Tharwat F. Tadros ◽  
...  

2010 ◽  
Vol 148 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Luisanna Ostacolo ◽  
Monica Marra ◽  
Francesca Ungaro ◽  
Silvia Zappavigna ◽  
Giovanni Maglio ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1033
Author(s):  
Sams M. A. Sadat ◽  
Mohammad Reza Vakili ◽  
Igor M. Paiva ◽  
Michael Weinfeld ◽  
Afsaneh Lavasanifar

The clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), which is the active metabolite of irinotecan, has been hampered because of its practical water-insolubility. In this study, we successfully synthesized two self-associating SN-38-polymer drug conjugates to improve the water-solubility of SN-38, while retaining its anticancer activity. The polymeric micellar SN-38 conjugates were composed of either methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) conjugated to SN-38 at the PBCL end (mPEO-b-PBCL/SN-38) or mPEO-block-poly(α-carboxyl-ε-caprolactone) attached to SN-38 from the pendent-free carboxyl site (mPEO-b-PCCL/SN-38). The chemical structure of block copolymers was confirmed by 1H NMR. The physicochemical characterizations of their self-assembled structures including size, surface charge, polydispersity, critical micellar concentration, conjugation content and efficiency, morphology, kinetic stability, and in vitro release of SN-38 were compared between the two formulations. In vitro anticancer activities were evaluated by measuring cellular cytotoxicity and caspase activation by MTS and Caspase-Glo 3/7 assays, respectively. The hemolytic activity of both micellar structures against rat red blood cells was also measured. The results showed the formation of SN-38-polymeric micellar conjugates at diameters < 50 nm with a narrow size distribution and sustained release of SN-38 for both structures. The loading content of SN-38 in mPEO-b-PBCL and mPEO-b-PCCL were 11.47 ± 0.10 and 12.03 ± 0.17 (% w/w), respectively. The mPEO-b-PBCL/SN-38, end-capped micelles were kinetically more stable than mPEO-b-PCCL/SN-38. The self-assembled mPEO-b-PBCL/SN-38 and mPEO-b-PCCL/SN-38 micelles resulted in significantly higher cytotoxic effects than irinotecan against human colorectal cancer cell lines HCT116, HT-29, and SW20. The CRC cells were found to be 70-fold to 330-fold more sensitive to micellar SN-38 than irinotecan, on average. Both SN-38-incorporated micelles showed two-fold higher caspase-3/7 activation levels than irinotecan. The mPEO-b-PBCL/SN-38 micelles were not hemolytic, but mPEO-b-PCCL/SN-38 showed some hemolysis. The overall results from this study uphold mPEO-b-PBCL/SN-38 over mPEO-b-PCCL/SN-38 micellar formulation as an effective delivery system of SN-38 that warrants further preclinical investigation.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1450 ◽  
Author(s):  
Camelia-Elena Iurciuc-Tincu ◽  
Monica Stamate Cretan ◽  
Violeta Purcar ◽  
Marcel Popa ◽  
Oana Maria Daraba ◽  
...  

Smart polymeric micelles (PMs) are of practical interest as nanocarriers for the encapsulation and controlled release of hydrophobic drugs. Two hydrophobic drugs, naturally-based curcumin (Cur) and synthetic 5-fluorouracil (5-FU), were loaded into the PMs formed by a well-defined pH-sensitive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP90-b-PEO398) block copolymer. The influence of the drug loading on the micellar sizes was investigated by dynamic light scattering (DLS) and it appears that the size of the PMs increases from around 60 to 100 nm when Cur is loaded. On the contrary, the loading of the 5-FU has a smaller effect on the micellar sizes. This difference can be attributed to higher molar mass of Cur with respect to 5-FU but also to higher loading efficiency of Cur, 6.4%, compared to that of 5-FU, 5.8%. In vitro drug release was studied at pH 2, 6.8, and 7.4, and it was observed that the pH controls the release of both drugs. At pH 2, where the P2VP sequences from the “frozen-in” micellar core are protonated, the drug release efficiencies exceed 90%. Moreover, it was demonstrated, by in vitro assays, that these PMs are hemocompatible and biocompatible. Furthermore, the PMs protect the Cur against the photo-degradation, whereas the non-ionic PEO corona limits the adsorption of bovine serum albumin (BSA) protein on the surface. This study demonstrates that these pH-sensitive PMs are suitable for practical utilization as human-safe and smart, injectable drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document