Octupole-like Supramolecular Aggregates of Conical Iron Fullerene Complexes into a Three-Dimensional Liquid Crystalline Lattice

2010 ◽  
Vol 132 (44) ◽  
pp. 15514-15515 ◽  
Author(s):  
Chang-Zhi Li ◽  
Yutaka Matsuo ◽  
Eiichi Nakamura
Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1302
Author(s):  
Younggi Hong ◽  
Munju Goh

Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained from conventional EPs, by replacing the random network structure with an oriented one. In this paper, we review the current progress in the field of LCEs and their application to highly thermally conductive composite materials.


A lattice model of liquid crystalline microstructure has been developed. It provides the basis for the three-dimensional solution of the Frank elasticity equations for given boundary conditions while, in addition, providing a mechanistic representation of the development of texture as the microstructure relaxes with time. It is also able to represent disclination motion and the processes associated with their interaction. In particular, it has been used to study (s = ± 1/2) disclination loops, both those described by a single rotation vector, 17, and those in which 17 has a constant angular relationship with the loop line and are equivalent to a point singularity at a distance much larger than the loop radius. The application of the model to disclinations of unit strength, which are unstable both energetically and topologically, has shown that the decomposition into two 1/2 strength lines of lower total energy occurs much more readily than topological escape in the third dimension. The implication for structures observed in capillary tubes is discussed. The influence on microstructure of a splay constant much higher than that of twist or bend is explored in the context of main-chain liquid crystalline polymers, in particular, the stabilization of tangential +1 lines under such conditions is predicted in accord with observed microstructural features.


2020 ◽  
Vol 117 (44) ◽  
pp. 27204-27210 ◽  
Author(s):  
Yong Hu ◽  
Zipeng Guo ◽  
Andrew Ragonese ◽  
Taishan Zhu ◽  
Saurabh Khuje ◽  
...  

Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field–assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.


2019 ◽  
Vol 7 (43) ◽  
pp. 13352-13366 ◽  
Author(s):  
Jiajia Yang ◽  
Weidong Zhao ◽  
Wanli He ◽  
Zhou Yang ◽  
Dong Wang ◽  
...  

This review presents up-to-date important progress in the field of liquid crystalline blue phase (BP) materials.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Willy W. Sun ◽  
Evan S. Krystofiak ◽  
Alejandra Leo-Macias ◽  
Runjia Cui ◽  
Antonio Sesso ◽  
...  

AbstractThe glycocalyx is a highly hydrated, glycoprotein-rich coat shrouding many eukaryotic and prokaryotic cells. The intestinal epithelial glycocalyx, comprising glycosylated transmembrane mucins, is part of the primary host-microbe interface and is essential for nutrient absorption. Its disruption has been implicated in numerous gastrointestinal diseases. Yet, due to challenges in preserving and visualizing its native organization, glycocalyx structure-function relationships remain unclear. Here, we characterize the nanoarchitecture of the murine enteric glycocalyx using freeze-etching and electron tomography. Micrometer-long mucin filaments emerge from microvillar-tips and, through zigzagged lateral interactions form a three-dimensional columnar network with a 30 nm mesh. Filament-termini converge into globular structures ~30 nm apart that are liquid-crystalline packed within a single plane. Finally, we assess glycocalyx deformability and porosity using intravital microscopy. We argue that the columnar network architecture and the liquid-crystalline packing of the filament termini allow the glycocalyx to function as a deformable size-exclusion filter of luminal contents.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (1) ◽  
pp. 29-31 ◽  
Author(s):  
Wolfgang Meier ◽  
Heino Finkelmann

During the last few years, liquid crystalline elastomers (LCEs) have been systematically produced by cross-linking liquid crystalline side-chain polymers. In these networks, a liquid crystalline molecule is fixed at each monomeric unit. LCEs exhibit a novel combination of properties. Due to liquid crystalline groups, they show anisotropic liquid crystalline properties similar to conventional liquid crystals (LCs); but due to the three-dimensional network-structure of the polymer chains, they show typical elastomer properties, such as rubber elasticity or shape stability. One exceptional property of this combination is demonstrated when a mechanical deformation to the LCE causes macroscopically uniform orientation of the long molecular axis of the LC units (the so-called “director”).This response of the LC-phase structure to an applied mechanical field is similar to the effect of electric or magnetic fields on low molecular weight liquid crystals (LMLC), as illustrated in Figure 1. Figure la shows an undeformed LCE. Because of the non-uniform orientation of the director, the sample scatters light strongly so the elastomer is translucent like frosted glass. On the other hand, applying a mechanical field the director becomes uniformly aligned and the sample is transparent (Figure 1b). Such a macroscopically ordered rubber exhibits optical properties very similar to single crystals. These propertie s of LCEs offer new prospects for technical application, e.g., in nonlinear and integrated optics.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Bohdan Senyuk ◽  
Natnael Behabtu ◽  
Angel Martinez ◽  
Taewoo Lee ◽  
Dmitri E. Tsentalovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document