Phase Behavior and Component Partitioning in Low Water Content Amorphous Carbohydrates and Their Potential Impact on Encapsulation of Flavors

2000 ◽  
Vol 48 (2) ◽  
pp. 395-399 ◽  
Author(s):  
Yvonne M. Gunning ◽  
Roger Parker ◽  
Steve G. Ring ◽  
Neil M. Rigby ◽  
Benjamin Wegg ◽  
...  
SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 921-930 ◽  
Author(s):  
Antonin Chapoy ◽  
Rod Burgass ◽  
Bahman Tohidi ◽  
J. Michael Austell ◽  
Charles Eickhoff

Summary Carbon dioxide (CO2) produced by carbon-capture processes is generally not pure and can contain impurities such as N2, H2, CO, H2 S, and water. The presence of these impurities could lead to challenging flow-assurance issues. The presence of water may result in ice or gas-hydrate formation and cause blockage. Reducing the water content is commonly required to reduce the potential for corrosion, but, for an offshore pipeline system, it is also used as a means of preventing gas-hydrate problems; however, there is little information on the dehydration requirements. Furthermore, the gaseous CO2-rich stream is generally compressed to be transported as liquid or dense-phase in order to avoid two-phase flow and increase in the density of the system. The presence of impurities will also change the system's bubblepoint pressure, hence affecting the compression requirement. The aim of this study is to evaluate the risk of hydrate formation in a CO2-rich stream and to study the phase behavior of CO2 in the presence of common impurities. An experimental methodology was developed for measuring water content in a CO2-rich phase in equilibrium with hydrates. The water content in equilibrium with hydrates at simulated pipeline conditions (e.g., 4°C and up to 190 bar) as well as after simulated choke conditions (e.g., at -2°C and approximately 50 bar) was measured for pure CO2 and a mixture of 2 mol% H2 and 98 mol% CO2. Bubblepoint measurements were also taken for this binary mixture for temperatures ranging from -20 to 25°C. A thermodynamic approach was employed to model the phase equilibria. The experimental data available in the literature on gas solubility in water in binary systems were used in tuning the binary interaction parameters (BIPs). The thermodynamic model was used to predict the phase behavior and the hydrate-dissociation conditions of various CO2-rich streams in the presence of free water and various levels of dehydration (250 and 500 ppm). The results are in good agreement with the available experimental data. The developed experimental methodology and thermodynamic model could provide the necessary data in determining the required dehydration level for CO2-rich systems, as well as minimum pipeline pressure required to avoid two-phase flow, hydrates, and water condensation.


FEMS Microbes ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Lydia Zeibich ◽  
Jennifer Guhl ◽  
Harold L Drake

ABSTRACT Many higher and lower animal gut ecosystems have complex resident microbial communities. In contrast, ingested soil is the primary source of the gut microbial diversity of earthworms, invertebrates of fundamental importance to the terrestrial biosphere. Earthworms also harbor a few endemic bacteria including Tenericutes-affiliated Candidatus Lumbricincola of unknown function. Gut microbes are subject to nutrient fluctuations due to dilution effects during gut passage, the nutrient richness of the anoxic gut, and dietary organic carbon, factors that could alter their activity/detection. This study's objective was to assess the potential impact of these factors on the occurrence and activity of ingested and endemic bacteria in gut content of Lumbricus terrestris. Fermentation product profiles of anoxic undiluted and diluted gut content treatments were similar, suggesting that experimental increase in water content and nutrient dilution had marginal impact on fermentation. However, 16S ribosomal Ribonucleic Acid (16S rRNA) sequence abundances indicated that stimulated bacterial taxa were not identical in undiluted and diluted treatments, with dominate potentially functionally redundant phylotypes being affiliated to the Firmicutes, Fusobacteria and Proteobacteria. Although the earthworm-associated Tenericutes were not stimulated in these treatments, the occurrence of three Tenericutes-affiliated phylotypes varied with the organic carbon richness of the earthworm diet, with two phylotypes being associated with high organic carbon richness. 16S rRNA sequence abundances indicated that other dominant gut taxa also varied with dietary organic carbon richness. These findings illustrate that functionally redundant ingested bacteria and earthworm-associated Tenericutes might be influenced by nutrient fluctuations in the gut and organic carbon richness of the earthworm diet.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 231
Author(s):  
Yuanqing Tao ◽  
Kefeng Yan ◽  
Xiaosen Li ◽  
Zhaoyang Chen ◽  
Yisong Yu ◽  
...  

In marine sediments, seawater influences the phase behavior of natural gas hydrate. As a porous medium, the water distribution and physical properties of montmorillonite are influenced by the salt ions in seawater. In this work, the bound-water content in, and crystal structure of, montmorillonite is measured to investigate the effect of salt ions on the water distribution in montmorillonite. It can be determined from the results that the bound-water content in montmorillonite decreases as the salt-ion concentration increases. Salt ions affect the intercalation of water molecules in montmorillonite, and they then inhibit the expansion effect of montmorillonite. Next, the phase behaviors of methane hydrate in montmorillonite with NaCl solution are investigated using high-pressure micro-differential scanning calorimetry. The phase behavior of hydrate in montmorillonite with NaCl solution is discussed. In montmorillonite with NaCl solution, the phase equilibrium temperatures and the conversion rate of methane hydrate both decrease with increasing NaCl concentration. The results show that methane hydrate in montmorillonite is influenced not only by the phase-equilibrium effect of salt ions, but also by the formation effect of the salt ions on the bound-water content in montmorillonite.


Author(s):  
Songquan Sun ◽  
Richard D. Leapman

Analyses of ultrathin cryosections are generally performed after freeze-drying because the presence of water renders the specimens highly susceptible to radiation damage. The water content of a subcellular compartment is an important quantity that must be known, for example, to convert the dry weight concentrations of ions to the physiologically more relevant molar concentrations. Water content can be determined indirectly from dark-field mass measurements provided that there is no differential shrinkage between compartments and that there exists a suitable internal standard. The potential advantage of a more direct method for measuring water has led us to explore the use of electron energy loss spectroscopy (EELS) for characterizing biological specimens in their frozen hydrated state.We have obtained preliminary EELS measurements from pure amorphous ice and from cryosectioned frozen protein solutions. The specimens were cryotransfered into a VG-HB501 field-emission STEM equipped with a 666 Gatan parallel-detection spectrometer and analyzed at approximately −160 C.


Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


Author(s):  
R.D. Leapman ◽  
S.Q. Sun ◽  
S-L. Shi ◽  
R.A. Buchanan ◽  
S.B. Andrews

Recent advances in rapid-freezing and cryosectioning techniques coupled with use of the quantitative signals available in the scanning transmission electron microscope (STEM) can provide us with new methods for determining the water distributions of subcellular compartments. The water content is an important physiological quantity that reflects how fluid and electrolytes are regulated in the cell; it is also required to convert dry weight concentrations of ions obtained from x-ray microanalysis into the more relevant molar ionic concentrations. Here we compare the information about water concentrations from both elastic (annular dark-field) and inelastic (electron energy loss) scattering measurements.In order to utilize the elastic signal it is first necessary to increase contrast by removing the water from the cryosection. After dehydration the tissue can be digitally imaged under low-dose conditions, in the same way that STEM mass mapping of macromolecules is performed. The resulting pixel intensities are then converted into dry mass fractions by using an internal standard, e.g., the mean intensity of the whole image may be taken as representative of the bulk water content of the tissue.


2019 ◽  
Vol 62 (11) ◽  
pp. 4001-4014
Author(s):  
Melanie Weirich ◽  
Adrian Simpson

Purpose The study sets out to investigate inter- and intraspeaker variation in German infant-directed speech (IDS) and considers the potential impact that the factors gender, parental involvement, and speech material (read vs. spontaneous speech) may have. In addition, we analyze data from 3 time points prior to and after the birth of the child to examine potential changes in the features of IDS and, particularly also, of adult-directed speech (ADS). Here, the gender identity of a speaker is considered as an additional factor. Method IDS and ADS data from 34 participants (15 mothers, 19 fathers) is gathered by means of a reading and a picture description task. For IDS, 2 recordings were made when the baby was approximately 6 and 9 months old, respectively. For ADS, an additional recording was made before the baby was born. Phonetic analyses comprise mean fundamental frequency (f0), variation in f0, the 1st 2 formants measured in /i: ɛ a u:/, and the vowel space size. Moreover, social and behavioral data were gathered regarding parental involvement and gender identity. Results German IDS is characterized by an increase in mean f0, a larger variation in f0, vowel- and formant-specific differences, and a larger acoustic vowel space. No effect of gender or parental involvement was found. Also, the phonetic features of IDS were found in both spontaneous and read speech. Regarding ADS, changes in vowel space size in some of the fathers and in mean f0 in mothers were found. Conclusion Phonetic features of German IDS are robust with respect to the factors gender, parental involvement, speech material (read vs. spontaneous speech), and time. Some phonetic features of ADS changed within the child's first year depending on gender and parental involvement/gender identity. Thus, further research on IDS needs to address also potential changes in ADS.


2020 ◽  
Vol 63 (7) ◽  
pp. 2281-2292
Author(s):  
Ying Zhao ◽  
Xinchun Wu ◽  
Hongjun Chen ◽  
Peng Sun ◽  
Ruibo Xie ◽  
...  

Purpose This exploratory study aimed to investigate the potential impact of sentence-level comprehension and sentence-level fluency on passage comprehension of deaf students in elementary school. Method A total of 159 deaf students, 65 students ( M age = 13.46 years) in Grades 3 and 4 and 94 students ( M age = 14.95 years) in Grades 5 and 6, were assessed for nonverbal intelligence, vocabulary knowledge, sentence-level comprehension, sentence-level fluency, and passage comprehension. Group differences were examined using t tests, whereas the predictive and mediating mechanisms were examined using regression modeling. Results The regression analyses showed that the effect of sentence-level comprehension on passage comprehension was not significant, whereas sentence-level fluency was an independent predictor in Grades 3–4. Sentence-level comprehension and fluency contributed significant variance to passage comprehension in Grades 5–6. Sentence-level fluency fully mediated the influence of sentence-level comprehension on passage comprehension in Grades 3–4, playing a partial mediating role in Grades 5–6. Conclusions The relative contributions of sentence-level comprehension and fluency to deaf students' passage comprehension varied, and sentence-level fluency mediated the relationship between sentence-level comprehension and passage comprehension.


Sign in / Sign up

Export Citation Format

Share Document