A Model for the Description of Polymer Surface Dynamic Behavior 1. Contact Angle vs Polymer Surface Properties

Langmuir ◽  
1995 ◽  
Vol 11 (7) ◽  
pp. 2674-2681 ◽  
Author(s):  
Feipeng P. Liu ◽  
Douglas J. Gardner ◽  
Michael P. Wolcott
Author(s):  
Anpalaki J. Ragavan ◽  
Cahit A. Evrensel ◽  
Peter Krumpe

Altered surface and viscoelastic material properties of mucus during respiratory diseases have a strong influence on its clearance by cilia and cough. Combined effects of the surface properties (contact angle and surface tension) and storage modulus with relatively unchanged viscosity on displacement of the simulated mucus aliquot during simulated cough through a model adult human trachea is investigated. For the mucus simulants used in this study contact angle and surface tension increase significantly as storage modulus increase while viscosity remains practically unchanged. Displacement of mucus simulant aliquots increased significantly with increasing storage modulus (and contact angle) at a given cough velocity in the range between 5 meters/second (m/s) and 30 m/s with duration 0.3 s. Results suggest that the interactive effects of elasticity and surface properties may help facilitate mucus displacement at low cough velocities.


2020 ◽  
Vol 6 ◽  
pp. 40-55
Author(s):  
N.M. Ivanova ◽  
◽  
E.O. Filippova ◽  
A.N. Aleinik ◽  
V.F. Pichugin ◽  
...  

Effects of the low-temperature plasma exposure, γ-irradiation, and joint g-irradiation and plasma exposure on the structure and surface properties of thin films based on polylactic acid (PLA) have been investigated. Films were obtained by the method a solvent-casting. It has been shown that films based on polylactic acid have topographically different sides: a smoother inner side and embossed outer one. PLA films have properties close to those hydrophobic, with a contact angle in the range of 70°-73° regardless of the surface side and belong to a weakly polar materials. The combined effect of plasma and gamma radiation slightly changes the surface topography. The effect of low-temperature plasma on the surface of the films leads to a decrease in the contact angle by 13°-55° (9-11%) and an increase in surface energy due to the polar component. The results of in vivo experiments on rabbits are presented. Biomicroscopy, optical coherence tomography, morphological and electron microscopic examination of the cornea after implantation of initial and radiation and plasma treated films showed that implantation of the films in the anterior chamber is not accompanied by a pronounced inflammatory reaction and increased intraocular pressure, while maintaining the morphological structure of the cornea almost unchanged.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1201 ◽  
Author(s):  
Alka Jaggessar ◽  
Asha Mathew ◽  
Tuquabo Tesfamichael ◽  
Hongxia Wang ◽  
Cheng Yan ◽  
...  

Orthopaedic surgery comes with an inherent risk of bacterial infection, prolonged antibiotic therapy and revision surgery. Recent research has focused on nanostructured surfaces to improve the bactericidal and osseointegrational properties of implants. However, an understanding of the mechanical properties of bactericidal materials is lacking. In this work, the surface properties of hydrothermal TiO2 nanostructured surfaces are investigated for their effect on bactericidal efficiency and cellular metabolic activity of human osteoblast cells. TiO2 nanostructures, approximately 307 nm in height and 14 GPa stiffness, were the most effective structures against both gram-positive (Staphylococcus aureus) and gram-negative (Pseudomonas aeruginosa) bacteria. Statistical analysis significantly correlated structure height to the death of both bacteria strains. In addition, the surface contact angle and Young’s modulus were correlated to osteoblast metabolic activity. Hydrophilic surfaces with a contact angle between 35 and 50° produced the highest cellular metabolic activity rates after 24 hours of incubation. The mechanical tests showed that nanostructures retain their mechanical stability and integrity over a long time-period, reaffirming the surfaces’ applicability for implants. This work provides a thorough examination of the surface, mechanical and wettability properties of multifunctional hydrothermally synthesised nanostructured materials, capable of killing bacteria whilst improving osteoblast metabolic rates, leading to improved osseointegration and antibacterial properties of orthopaedic implants.


2003 ◽  
Vol 782 ◽  
Author(s):  
Jin-Hyung Lee ◽  
Hyun-Woo Lim ◽  
Jin-Goo Park ◽  
Eun-Kyu Lee ◽  
Yangsun Kim

ABSTRACTHot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymer substrates. The optimization of embossing process should be accomplished based on polymer surface properties. Therefore, in this paper, polymers with different surface characteristic were selected and the surface properties of each polymers such as surface energy and adhesion force were investigated by contact angle and AFM. Based on these results, the imprinted nano patterns were compared. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2, 2H –perfluorooctyl)-trichlorosilane to reduce the stiction between molds and polymer substrates. For embossing, pressure of 500 psi, embossing time of 5 min and temperature of above transition temperature were applied. Mr-I 8010 polymer (Micro Resist Technology), Polymethylmethacrylate (PMMA 495k) and LOR (polyaliphatic imide copolymer) were used as substrate for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness of 150 nm. The nano size patterns obtained by hot embossing were identified by atomic force microscopy without breaking the pattern and compared based on the polymer surface properties. The mr-I 8010 which has the lowest surface energy and adhesion force shows the best demolding property.


2003 ◽  
Vol 18 (5) ◽  
pp. 1046-1053 ◽  
Author(s):  
Toshiyuki Mori ◽  
Mamoru Watanabe ◽  
Hiromitsu Nakajima ◽  
Masaru Harada ◽  
Kenjiro Fujimoto ◽  
...  

Surface properties and photocatalytic oxidation reactions on the hollandite-type compound K2Ga2Sn6O16 (KGSO) were examined for photoinduced hydrophilicity and oxidative decomposition of an endocrine-disrupting chemical, pentachlorophenol (C6Cl5OH, PCP), under ultraviolet (UV) illumination. The thin films and mesoporous powders of hollandite were used for examination of surface properties and photocatalysis, respectively. The photoinduced surface property was examined by measurement of the contact angle of water, ortho-chlorophenol (o-C6H4ClOH), and toluene on the surface of KGSO. The contact angle of H2O and o-C6H4ClOH decreased to 0° under UV illumination. The toluene showed little change in contact angle under UV irradiation. It is concluded that the surface of KGSO shows photoinduced hydrophilicity for H2O and aromatic compounds with hydroxyl groups (−OH). In addition, KGSO clearly showed a photo-oxidative decomposition of PCP under weak UV illumination at room temperature. The decomposition speed of C6Cl5OH on KGSO was much faster than that on previous reported nano-sized SnO2 photocatalysts. It is expected that photo-oxidative decomposition of aromatic compound will be controlled by a combination of optimum composition of the hollandite phase and control of the morphology of the hollandite particles. This suggests that hollandite would be a promising photocatalyst for decomposition of aromatic compounds in endocrine-disrupting chemicals.


2020 ◽  
Vol 1010 ◽  
pp. 602-607
Author(s):  
Maizlinda Izwana Idris ◽  
Mohammed Firdaus Adzhari ◽  
Siti Natrah Abdul Bakil ◽  
Tee Chuan Lee ◽  
Mohamad Ali Selimin ◽  
...  

This work focuses on the fabrication of film based on natural biopolymers for wound healing application. Alginate and chitosan were choosen because of their oustanding properties such as biocompatible, hydrophilic and non-toxic. Earlier, the biopolymer film was fabricated by using alginate 1% wt and chitosan 1% wt. solutions at volume ratios of 99:1 and 97:3. Next, the biopolymer film solution was cross-linked with 1M CaCl2.2H2O for two hours and later dried for 24 hours at room temperature. Then, the surface properties of the prepared biopolymer films were characterised via Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and contact angle measurement. It was observed that the surface of the biopolymer film became rougher as the volume of the chitosan increases. This condition was confirmed with average surface roughness, RA for biopolymer film with ratio of 97:3 resulted in higher values. Also it was found that the surface of biopolymer films were hydrophilic after the contact angle was less than 90°. This can be concluded that the biopolymer based on alginate/chitosan is a promising candidate for wound healing materials particularly with good surface properties for faster healing process at the wound areas.


Sign in / Sign up

Export Citation Format

Share Document