Riboflavin Deficiency Alters Cholesterol Homeostasis Partly by Reducing Apolipoprotein B100 Synthesis in HepG2 Cells

Author(s):  
Zhonghao Xin ◽  
Xiangyu Bian ◽  
Weina Gao ◽  
Yawen Wang ◽  
Zhanxin Yao ◽  
...  

Abstract. Riboflavin deficiency led to lower blood cholesterol level and higher content of hepatic cholesterol in rats and the mechanisms are not clarified yet. We hypothesized that riboflavin deficiency might alter cholesterol homeostasis via apolipoprotein B100, one of the important proteins in cholesterol transport. To test this hypothesis, HepG2 cells were cultured in riboflavin-deficient media for 4 days to develop riboflavin deficiency. Compared to riboflavin-sufficient cells, the mRNA (0. 37 ± 0.04 vs 1.03 ± 0.29 relative expression level, n = 3) and protein expressions of apolipoprotein B100 (intracellular: 173.7 ± 14.4 vs 254.8 ± 47.2 μg/mg protein; extracellular: 93.8 ± 31.1 vs 161.6 ± 23.9 μg/mg protein; n = 3) were significantly reduced in riboflavin-deficient cells ( P < 0.05). Endoplasmic reticulum oxidoreductin 1 and protein disulfide isomerase, two enzymes involved in the oxidative folding of apolipoprotein B100, were also lower remarkably in expression at both mRNA and protein levels. Meanwhile, intracellular cholesterol was increased (256.3 ± 17.1 μM/g protein vs 181.4 ± 23.9 μM/g protein, n = 4) and extracellular cholesterol decreased (110.0 ± 23.2 μM/g protein vs 166.2 ± 34.6 μM/g protein, n = 4) significantly in riboflavin-deficient cells ( P < 0.05). Very low-density lipoprotein was also diminished (29.0 ± 6.1 μM/g protein vs 67.0 ± 11.0 μM/g protein, n = 4) in the culture media ( P < 0.05). These findings suggest that riboflavin deficiency alters cholesterol homeostasis partly by reducing apolipoprotein B100 synthesis in HepG2 cells.

2009 ◽  
Vol 284 (16) ◽  
pp. 10561-10570 ◽  
Author(s):  
Markey C. McNutt ◽  
Hyock Joo Kwon ◽  
Chiyuan Chen ◽  
Justin R. Chen ◽  
Jay D. Horton ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Akash Das ◽  
Michael S Brown ◽  
Donald D Anderson ◽  
Joseph L Goldstein ◽  
Arun Radhakrishnan

When human fibroblasts take up plasma low density lipoprotein (LDL), its cholesterol is liberated in lysosomes and eventually reaches the endoplasmic reticulum (ER) where it inhibits cholesterol synthesis by blocking activation of SREBPs. This feedback protects against cholesterol overaccumulation in the plasma membrane (PM). But how does ER know whether PM is saturated with cholesterol? In this study, we define three pools of PM cholesterol: (1) a pool accessible to bind 125I-PFO*, a mutant form of bacterial Perfringolysin O, which binds cholesterol in membranes; (2) a sphingomyelin(SM)-sequestered pool that binds 125I-PFO* only after SM is destroyed by sphingomyelinase; and (3) a residual pool that does not bind 125I-PFO* even after sphingomyelinase treatment. When LDL-derived cholesterol leaves lysosomes, it expands PM's PFO-accessible pool and, after a short lag, it also increases the ER's PFO-accessible regulatory pool. This regulatory mechanism allows cells to ensure optimal cholesterol levels in PM while avoiding cholesterol overaccumulation.


2016 ◽  
Vol 116 (09) ◽  
pp. 565-577 ◽  
Author(s):  
Gemma Brufau ◽  
Marion J. J. Gijbels ◽  
Ine M. J. Wolfs ◽  
Saskia van der Velden ◽  
Chantal C. H. Pöttgens ◽  
...  

SummaryInflammatory responses and cholesterol homeostasis are interconnected in atherogenesis. Interleukin (IL)-10 is an important anti-inflammatory cytokine, known to suppress atherosclerosis development. However, the specific cell types responsible for the atheroprotective effects of IL-10 remain to be defined and knowledge on the actions of IL-10 in cholesterol homeostasis is scarce. Here we investigated the functional involvement of myeloid IL-10-mediated atheroprotection. To do so, bone marrow from IL-10 receptor 1 (IL-10R1) wild-type and myeloid IL-10R1-deficient mice was transplanted to lethally irradiated female LDLR-/- mice. Hereafter, mice were given a high cholesterol diet for 10 weeks after which atherosclerosis development and cholesterol metabolism were investigated. In vitro, myeloid IL-10R1 deficiency resulted in a pro-inflammatory macrophage phenotype. However, in vivo significantly reduced lesion size and severity was observed. This phenotype was associated with lower myeloid cell accumulation and more apoptosis in the lesions. Additionally, a profound reduction in plasma and liver cholesterol was observed upon myeloid IL-10R1 deficiency, which was reflected in plaque lipid content. This decreased hypercholesterolaemia was associated with lowered very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) levels, likely as a response to decreased intestinal cholesterol absorption. In addition, IL-10R1 deficient mice demonstrated substantially higher faecal sterol loss caused by increased non-biliary cholesterol efflux. The induction of this process was linked to impaired ACAT2-mediated esterification of liver and plasma cholesterol. Overall, myeloid cells do not contribute to IL-10-mediated atheroprotection. In addition, this study demonstrates a novel connection between IL-10-mediated inflammation and cholesterol homeostasis in atherosclerosis. These findings make us reconsider IL-10 as a beneficial influence on atherosclerosis.Supplementary Material to this article is available online at www.thrombosis-online.com.


2007 ◽  
Vol 293 (1) ◽  
pp. R70-R77 ◽  
Author(s):  
Sebastian Luci ◽  
Beatrice Giemsa ◽  
Holger Kluge ◽  
Klaus Eder

This study investigated the effect of clofibrate treatment on expression of target genes of peroxisome proliferator-activated receptor (PPAR)-α and various genes of the lipid metabolism in liver and adipose tissue of pigs. An experiment with 18 pigs was performed in which pigs were fed either a control diet or the same diet supplemented with 5 g clofibrate/kg for 28 days. Pigs treated with clofibrate had heavier livers, moderately increased mRNA concentrations of various PPAR-α target genes in liver and adipose tissue, a higher concentration of 3-hydroxybutyrate, and markedly lower concentrations of triglycerides and cholesterol in plasma and lipoproteins than control pigs ( P < 0.05). mRNA concentrations of sterol regulatory element-binding proteins (SREBP)-1 and -2, insulin-induced genes ( Insig) -1 and Insig-2, and the SREBP target genes acetyl-CoA carboxylase, 3-methyl-3-hydroxyglutaryl-CoA reductase, and low-density lipoprotein receptor in liver and adipose tissue and mRNA concentrations of apolipoproteins A-I, A-II, and C-III in the liver were not different between both groups of pigs. In conclusion, this study shows that clofibrate treatment activates PPAR-α in liver and adipose tissue and has a strong hypotriglyceridemic and hypocholesterolemic effect in pigs. The finding that mRNA concentrations of some proteins responsible for the hypolipidemic action of fibrates in humans were not altered suggests that there were certain differences in the mode of action compared with humans. It is also shown that PPAR-α activation by clofibrate does not affect hepatic expression of SREBP target genes involved in synthesis of triglycerides and cholesterol homeostasis in liver and adipose tissue of pigs.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hiroe Go ◽  
Jin Ah Ryuk ◽  
Hye Won Lee ◽  
In Sil Park ◽  
Ki-Jung Kil ◽  
...  

The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. Inin vivostudy using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activityin vitro. These observations support the idea that Sagunja-tang is bioavailable bothin vivoandin vitroand could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Younghwa Goo ◽  
Pradip Saha ◽  
Larry Chan ◽  
Antoni Paul

Lipid laden macrophages/foam cells are a hallmark of atherosclerotic lesions from early to late stages of development. Macrophages take-up modified low-density lipoprotein (mLDL) particles and store surplus mLDL-derived cholesterol as cholesterol ester (CE) in cytoplasmic lipid droplets (LDs). Accelerating CE hydrolysis from the LDs is a plausible strategy to promote reverse cholesterol transport from the atheroma. However, the identity of the CE hydrolases that function on LDs remains unknown. Previously we identified lipid droplet-associated hydrolase (LDAH) in LDs purified from macrophages and reported that in vitro LDAH regulates CE levels by increasing CE hydrolysis. To determine the relevance of LDAH in atherogenesis, we have generated LDAH knockout (LDAH-/-) mice. Mouse peritoneal macrophages (MPM) isolated from LDAH-/- mice had increased cytoplasmic LDs, increased net CE content, and decreased cholesterol efflux. In atherosclerosis studies, both male and female LDAH-/- mice crossed with apolipoprotein E knockout (apoE-/-) mice fed a Western diet developed larger lesions. Lesions of LDAH-/-/ apoE-/- mice were characterized by increased areas of macrophages containing enlarged cytoplasms with large LDs. Supporting a direct atheroprotective role of LDAH in macrophages, lesions of apoE-/- mice that received bone marrows from LDAH-/-/apoE-/- mice progressed faster than those that received bone marrow cells from LDAH+/+/apoE-/- mice. In qPCR analyses of genes involved in cholesterol homeostasis in macrophages, we found that ABC binding cassette transporters ABCA1 and ABCG1, which mediate cholesterol efflux through the plasma membrane, were consistently decreased in LDAH-/- MPM. Further in vivo gene expression studies on macrophages selectively obtained from lesions using laser capture microdissection are underway. In conclusion, our study suggests that LDAH promotes LD CE hydrolysis and cholesterol efflux from foam cells within the atheroma, and uncovers a potential target to promote reverse cholesterol from arteries as a means of ameliorating atherosclerosis development.


Sign in / Sign up

Export Citation Format

Share Document