scholarly journals A relationship between rain radar reflectivity and height elevation variance of ringwaves due to the impact of rain on the sea surface

Radio Science ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
P. Sobieski ◽  
C. Craeye ◽  
L. F. Bliven
Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2021 ◽  
Vol 13 (11) ◽  
pp. 2103
Author(s):  
Yuchen Liu ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Wei Wang

An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR) reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the potential effects of data assimilation frequency and to evaluate the outputs from different domain resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of convective rain storms. The results show that the assimilation of radar reflectivity and GTS data collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei region of northern China. It is indicated by the experimental results that the rapid update assimilation has a positive impact on the prediction of the location, tendency, and development of rain storms associated with the study area. In order to explore the influence of data assimilation in the outer domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared. The results show that the data assimilation in the outer domain has a positive effect on the output of the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale features through the incorporation of radar observations, hourly assimilation time interval does not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity observations. Therefore, before data assimilation, the validity of assimilation data should be judged as far as possible in advance, which can not only improve the prediction accuracy, but also improve the assimilation efficiency.


2021 ◽  
Vol 13 (15) ◽  
pp. 3014
Author(s):  
Feng Wang ◽  
Dongkai Yang ◽  
Guodong Zhang ◽  
Jin Xing ◽  
Bo Zhang ◽  
...  

Sea surface height can be measured with the delay between reflected and direct global navigation satellite system (GNSS) signals. The arrival time of a feature point, such as the waveform peak, the peak of the derivative waveform, and the fraction of the peak waveform is not the true arrival time of the specular signal; there is a bias between them. This paper aims to analyze and calibrate the bias to improve the accuracy of sea surface height measured by using the reflected signals of GPS CA, Galileo E1b and BeiDou B1I. First, the influencing factors of the delay bias, including the elevation angle, receiver height, wind speed, pseudorandom noise (PRN) code of GPS CA, Galileo E1b and BeiDou B1I, and the down-looking antenna pattern are explored based on the Z-V model. The results show that (1) with increasing elevation angle, receiver height, and wind speed, the delay bias tends to decrease; (2) the impact of the PRN code is uncoupled from the elevation angle, receiver height, and wind speed, so the delay biases of Galileo E1b and BeiDou B1I can be derived from that of GPS CA by multiplication by the constants 0.32 and 0.54, respectively; and (3) the influence of the down-looking antenna pattern on the delay bias is lower than 1 m, which is less than that of other factors; hence, the effect of the down-looking antenna pattern is ignored in this paper. Second, an analytical model and a neural network are proposed based on the assumption that the influence of all factors on the delay bias are uncoupled and coupled, respectively, to calibrate the delay bias. The results of the simulation and experiment show that compared to the meter-level bias before the calibration, the calibrated bias decreases the decimeter level. Based on the fact that the specular points of several satellites are visible to the down-looking antenna, the multi-observation method is proposed to calibrate the bias for the case of unknown wind speed, and the same calibration results can be obtained when the proper combination of satellites is selected.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 173-192 ◽  
Author(s):  
Wei-Ching Hsu ◽  
Christina M. Patricola ◽  
Ping Chang

Author(s):  
R. Shunmugapandi ◽  
S. Gedam ◽  
A. B. Inamdar

Abstract. Ocean surface phytoplankton responses to the tropical cyclone (TC)/storms have been extensively studied using satellite observations by aggregating the data into a weekly or bi-weekly composite. The reason behind is the significant limitations found in the satellite-based observation is the missing of valid data due to cloud cover, especially at the time of cyclone track passage. The data loss during the cyclone is found to be a significant barrier to efficiently investigate the response of chl-a and SST during cyclone track passage. Therefore it is necessary to rectify the above limitation to effectively study the impact of TC on the chlorophyll-a concentration (chl-a) and the sea surface temperature (SST) to achieve a complete understanding of their response to the TC prevailed in the Arabian Sea. Intending to resolve the limitation mentioned above, this study aims to reconstruct the MODIS-Aqua chl-a, and SST data using Data Interpolating Empirical Orthogonal Function (DINEOF) for all the 31 cyclonic events occurred in the Arabian Sea during 2003-2018 (16 years). Reconstructed satellite retrieved data covering all the cyclonic events were further used to investigate the chl-a and SST dynamics during TC. From the results, the exciting fact has been identified that only two TC over the eastern-AS were able to induce phytoplankton bloom. On investigating this scenario using sea surface temperature, it was disclosed that the availability of nutrients decides the suitable condition for the phytoplankton to proliferate in the surface ocean. Relevant to the precedent criterion, the results witnessed that the 2 TC (Phyan and Ockhi cyclone) prevailed in the eastern AS invoked a suitable condition for phytoplankton bloom. Other TC found to be less provocative either due to less intensity, origination region or the unsuitable condition. Thereby, gap-free reconstructed daily satellite-derived data efficiently investigates the response of bio-geophysical parameters during cyclonic events. Moreover, this study sensitised that though several TC strikes the AS, only two could impact phytoplankton productivity and SST found to highly consistent with the chl-a variability during the cyclone passage.


2013 ◽  
Vol 9 (4) ◽  
pp. 4553-4598 ◽  
Author(s):  
G. Milzer ◽  
J. Giraudeau ◽  
S. Schmidt ◽  
F. Eynaud ◽  
J. Faust

Abstract. In the present study we investigate dinocyst assemblages in the Trondheimsfjord over the last 25 to 50 yr from three well-dated multi-cores (210Pb and 137Cs) retrieved along the fjord axis. The downcore distribution of the cysts is discussed in view of changes of the key surface water parameters sea-surface temperatures (SSTs) and sea-surface salinities (SSSs) monitored in the fjord, as well as river discharges. We examine the impact of the North Atlantic Oscillation pattern and of waste water supply from the local industry and agriculture on the fjord ecological state and hence dinocyst species diversity. Our results show that dinocyst production and diversity in the fjord is not evidently affected by human-induced eutrophication. Instead the assemblages appear to be mainly controlled by the NAO-related changes in physico-chemical characteristics of the surface mixed layer. Still, discharges of major rivers were modulated, since 1985 by the implementation of hydropower plants which certainly influences the freshwater and nutrient supply into the fjord. The impact, however, is variable according to the local geographical setting, and barely differentiated from natural changes in river run off. We ultimately test the use of the modern analogue technique (MAT) for the reconstruction of winter and summer SSTs and SSSs and annual primary productivity (PP) in this particular fjord setting. The reconstructed data are compared with time-series of SSTs and SSSs measured at 10 m water depth, as well as with mean annual PPs along the Norwegian coast and within Scandinavian fjords. The reconstructions are in general good agreement with the instrumental measurements and observations from other fjords. Major deviations can be addressed to peculiarities in the assemblages linked to the particular fjord setting and the related hydrological structure.


2021 ◽  
Vol 4 ◽  
pp. 99-111
Author(s):  
Y.A Pavroz . ◽  

An attempt is made to develop a method for long-term forecasting of the ice breakup time for the Vyatka River basin, to identify the impact of the distribution of sea surface temperature and geopotential height in the informative regions at the levels H100 and H500 over the Northern Hemisphere on the river ice breakup. The location and boundaries of the informative regions in the fields of H100 and H500 were revealed by the discriminant analysis, the EOF expansion coefficients of the fields of anomalies of monthly mean values of H100 and H500 for January and February and the anomalies of monthly mean sea surface temperature in the North Atlantic and Northwest Pacific were used as potential predictors. The stepwise regression analysis allowed deriving good and satisfactory (S/σ = 0.45–0.73) complex prognostic equations for forecasting the ice breakup time for the Vyatka River basin. The essential influence of H100 and H500 geopotential height fields and the spatial distribution of sea surface temperature anomalies in the North Atlantic and Northwest Pacific in January and February on the river ice breakup time is revealed. It is proposed to improve the method by considering the impact of air temperature, maximum ice thickness per winter, and other indirect characteristics on the processes of river ice breakup in the Vyatka River basin. Keywords: ice regime, long-range forecast, river ice breakup, expansion coefficients, geopotential height fields, spring ice phenomena, energy-active zones of the oceans, complex prognostic equation


2021 ◽  
Author(s):  
André Paul ◽  
Alexandre Cauquoin ◽  
Stefan Mulitza ◽  
Thejna Tharammal ◽  
Martin Werner

<p>In simulations of the climate during the Last Glacial Maximum (LGM), we employ two different isotope-enabled atmospheric general circulation models (NCAR iCAM3 and MPI ECHAM6-wiso) and use simulated (by coupled climate models) as well as reconstructed (from a new global climatology of the ocean surface duing the LGM, GLOMAP) surface conditions.</p><p>The resulting atmospheric fields reflect the more pronounced structure and gradients in the reconstructions, for example, the precipitation is more depleted in oxygen-18 in the high latitudes and more enriched in low latitudes, especially in the tropical convective regions over the maritime continent in the equatorial Pacific and Indian Oceans and over the equatorial Atlantic Ocean. Furthermore, at the sites of ice cores and speleothems, the model-data fit improves in terms of the coefficients of determination and root-mean square errors.</p><p>In additional sensitivity experiments, we also use the climatologies by Annan and Hargreaves (2013) and Tierney et al. (2020) and consider the impact of changes in reconstructed sea-ice extent and the global-mean sea-surface temperature.</p><p>Our findings imply that the correct simulation or reconstruction of patterns and gradients in sea-surface conditions are crucial for a successful comparison to oxygen-isotope data from ice cores and speleothems.</p>


Sign in / Sign up

Export Citation Format

Share Document