Taliks: A Tipping Point in Discontinuous Permafrost Degradation in Peatlands

2019 ◽  
Vol 55 (11) ◽  
pp. 9838-9857 ◽  
Author(s):  
Élise G. Devoie ◽  
James R. Craig ◽  
Ryan F. Connon ◽  
William L. Quinton

2021 ◽  
Author(s):  
Miguel Bartolomé ◽  
Ana Moreno ◽  
Marc Luetscher ◽  
Christoph Spötl ◽  
Maria Leunda ◽  
...  

<p>Cryogenic cave carbonates (CCC) are rare speleothems that form when water freezes inside cave ice bodies. CCC have been used as an proxy for permafrost degradation, permafrost thickness, or subsurface ice formation. The presence of these minerals is usually attributed to warm periods of permafrost degradation. We found coarse crystalline CCC types within transparent, massive congelation ice in two Pyrenean ice caves in the Monte Perido Massif: Devaux, located on the north face at 2828 m a.s.l., and Sarrios 6, located in the south face at 2780 m a.s.l. The external mean annual air temperature (MAAT) at Devaux is ~ 0°C, while at Sarrios 6 is ~ 2.5°C. In the Monte Perdido massif discontinuous permafrost is currently present between 2750 and 2900 m a.s.l. and is more frequent above 2900 m a.s.l. in northern faces. In Devaux, air and rock temperatures, as well as the presence of hoarfrost and the absence of drip sites indicate a frozen host rock. Moreover, a river flows along the main gallery, and during winters the water freezes at the spring causing backflooding in the cave. In contrast, Sarrios 6 has several drip sites, although the gallery where CCC were collected is hydrologically inactive. This gallery opened in recent years due to ice retreat. During spring, water is present in the gallery due to the overflow of ponds forming beneath drips. CCC commonly formed as sub-millimeter-size spherulites, rhombohedrons and rafts. <sup>230</sup>Th ages of the same CCC morphotype indicate that their formation took place at 1953±7, 1959±14, 1957±14, 1958±15, 1974±16 CE in Devaux, while in Sarrios 6 they formed at 1964±5, 1992±2, 1996±1 CE. The cumulative probability density function indicates that the most probable formation occurred 1957-1965 and 1992-1997. The instrumental temperature record at 2860 m a.s.l. indicates positive MAAT in 1964 (0.2°C) and 1997 (0.8°C). CCC formation could thus correspond with those two anomalously warm years. The massive and transparent ice would indicate a sudden ingress of water and subsequent slow freezing inside both caves during those years. Probably, CCC formation took place at a seasonal scale during the annual cycle.</p>



2011 ◽  
Vol 48 (5) ◽  
pp. 720-740 ◽  
Author(s):  
Richard Fortier ◽  
Anne-Marie LeBlanc ◽  
Wenbing Yu

Differential subsidence of as much as 0.85 m is affecting the access road to Umiujaq Airport in Nunavik (Quebec), Canada, located in the discontinuous permafrost zone. A geotechnical and geophysical investigation including piezocone test, ground-penetrating radar profiling, electrical resistivity tomography, and numerical modeling of the thermal regime of the road embankment and subgrade is presented to characterize the ground stratigraphy and permafrost conditions and to assess the exact causes and effects of permafrost degradation on the road embankment. The subsidence is due to thaw consolidation taking place in a layer of ice-rich silt underneath a superficial sand layer. While the seasonal freeze–thaw cycles were initially restricted to the sand layer, the thawing front has now reached the thaw-unstable ice-rich silt layer. According to our numerical modeling, the increase in air temperature recently observed in Nunavik cannot be the sole cause of the observed subsidence affecting this engineering structure. The thick embankment also acts as a snow fence favoring the accumulation of snow on the embankment shoulders. The permafrost degradation is also due to the thermal insulation of the snow cover reducing heat loss in the embankment shoulders and toes.



1987 ◽  
Vol 24 (11) ◽  
pp. 2206-2222 ◽  
Author(s):  
Michel Allard ◽  
Maurice K. Seguin

Permafrost evolution in postglacial marine silts near the tree line was reconstructed using landform analysis, 14C dating, and palynostratigraphic analysis of peat sections. In the forest–tundra, below the tree line, four sites in peat plateaus have a stratigraphic sequence indicating an alluvial plain environment from 6000 to 4800 BP followed by a wetland supporting trees and shrubs with deep snow accumulation and without permafrost. Ground heave occurred between 1900 and 1200 BP as peat plateaus and palsas were formed. In the shrub–tundra, above the tree line, three permafrost sites with buried peat beds suggest that climatic conditions were cold enough for discontinuous permafrost in the surrounding landscape starting from land emergence, about 5800 BP; however, fen expansion and sedge peat accumulation continued over unfrozen ground until 2300, 1560, and 1400 BP. At these dates, the sites were buried with silt, probably as a result of mass wasting on nearby permafrost mounds and then permafrost aggraded under the sites. Generally, the palynostratigraphic data reflect a marked cooling of climate starting by 3200–2700 BP and culminating in a major period of permafrost aggradation between 1900 and 1200 BP. Permafrost degradation has been dominant since then despite other possible cold intervals. Nowadays, the permafrost in marine silts is twice as thick and three times more widespread in the shrub–tundra than in the forest–tundra.



2021 ◽  
Author(s):  
Thomas A. Douglas ◽  
Christopher A. Hiemstra ◽  
Stephanie P. Saari ◽  
Kevin L. Bjella ◽  
Seth W. Campbell ◽  
...  

Accurate identification of the relationships between permafrost extent and landscape patterns helps develop airborne geophysical or remote sensing tools to map permafrost in remote locations or across large areas. These tools are particularly applicable in discontinuous permafrost where climate warming or disturbances such as human development or fire can lead to rapid permafrost degradation. We linked field-based geophysical, point-scale, and imagery surveying measurements to map permafrost at five fire scars on the Tanana Flats in central Alaska. Ground-based elevation surveys, seasonal thaw-depth profiles, and electrical resistivity tomography (ERT) measurements were combined with airborne imagery and light detection and ranging (LiDAR) to identify relationships between permafrost geomorphology and elapsed time since fire disturbance. ERT was a robust technique for mapping the presence or absence of permafrost because of the marked difference in resistivity values for frozen versus unfrozen material. There was no clear relationship between elapsed time since fire and permafrost extent at our sites. The transition zone boundaries between permafrost soils and unfrozen soils in the collapse-scar bogs at our sites had complex and unpredictable morphologies, suggesting attempts to quantify the presence or absence of permafrost using aerial measurements alone could lead to incomplete results. The results from our study indicated limitations in being able to apply airborne surveying measurements at the landscape scale toward accurately estimating permafrost extent.



2019 ◽  
Vol 7 (4) ◽  
pp. 1019-1040 ◽  
Author(s):  
Florence Magnin ◽  
Bernd Etzelmüller ◽  
Sebastian Westermann ◽  
Ketil Isaksen ◽  
Paula Hilger ◽  
...  

Abstract. Permafrost in steep rock slopes has been increasingly studied since the early 2000s in conjunction with a growing number of rock slope failures, which likely resulted from permafrost degradation. In Norway, rock slope destabilization is a widespread phenomenon and a major source of risk for the population and infrastructure. However, a lack of precise knowledge of the permafrost distribution in steep slopes hinders the assessment of its role in these destabilizations. This study proposes the first nationwide permafrost probability map for the steep slopes of Norway (CryoWall map). It is based on a multiple linear regression model fitted with multi-annual rock surface temperature (RST) measurements, collected at 25 rock slope sites, spread across a latitudinal transect (59–69∘ N) over mainland Norway. The CryoWall map suggests that discontinuous permafrost widely occurs above 1300–1400 and 1600–1700 m a.s.l. in the north and south rock faces of southern Norway (59∘ N), respectively. This lower altitudinal limit decreases in northern Norway (70∘ N) by about 500±50 m, with a more pronounced decrease for south faces, as a result of the insolation patterns largely driven by midnight sun in summer and polar night in winter. Similarly, the mean annual RST differences between north and south faces of similar elevation range around 1.5 ∘C in northern Norway and 3.5 ∘C in southern Norway. The CryoWall map is evaluated against direct ice observations in steep slopes and discussed in the context of former permafrost studies in various types of terrain in Norway. We show that permafrost can occur at much lower elevations in steep rock slopes than in other terrains, especially in north faces. We demonstrate that the CryoWall map is a valuable basis for further investigations related to permafrost in steep slopes in terms of both practical concerns and fundamental science.



2020 ◽  
Author(s):  
Maria Timofeeva ◽  
Olga Goncharova ◽  
Georgy Matyshak

<p>In the northern ecosystems’ soils, the carbon stock is preserved in peat soils which includes frozen peat. It is vulnerable to any climate changes. The permafrost degradation can affect both the quantity and the composition of dissolved organic carbon of permafrost-affected soils, especially peat soils.</p><p>The main aim of our study was to determine the relationship among peat type, water regime and the quantity and composition of water borne carbon export. The research site was located in the discontinuous permafrost zone (N65º18’, E72º52’). Monoliths of various peat soils were collected in summer 2019 for a laboratory experiment.</p><p>The experiments were carried out with 6 types of monoliths (oligotrophic fibric peat; oligotrophic hemic peat with lichen debris; eutrophic hemic peat with reindeer moss debris; eutrophic sapric peat; eutrophic sapric peat with a burnt horizon; oligotrophic fibric peat, underlied with sand). We try to understand how organic matter is leached from peat soils with different constitution and different degree of decomposition. In the model experiment, we simulated 3 types of hydrological conditions. Soil monoliths were watered, and the contents of DOC and POC were determined in the collected soil waters.</p><ol><li>Simulation of the moderate rainfall (70 mm) by adding distilled water during the week. DOC in this case ranged from 44,2±3.0 mg/l in oligotrophic peat to 80,6±28,7 mg/l in eutrophic peat.</li> <li>The simultaneous flow of large quantities of water, simulating prolonged rainfall or spring snowmelt. In this case DOC content leaching from fibric oligotrophic peat didn`t change much while DOC leaching from sapric eutrophic peat decreased in comparison with moderate rainfall.</li> <li>During modeling short stagnant regimen (spring conditions) we observed increase DOC, especially in sapric eutrophic peat (up to 291,0±11,3 mg/l). The mineral horizon under the peat layer reduced the rate of leaching of organic substances from the soil.</li> </ol><p>Our results indicate the significant role of both the peat constitution and hydrological regime of soils on the rate and amount of organic matter entering the hydrological basin from peat permafrost-affected soils. The data can be used to simulate the dynamics of permafrost ecosystems with changing climatic parameters or with the activation of anthropogenic load.</p><p>This research was supported by the Russian Foundation for Basic Research (Grant 18-04-00952)</p>



2018 ◽  
Vol 15 (6) ◽  
pp. 1663-1682 ◽  
Author(s):  
Matthias B. Siewert

Abstract. Soil organic carbon (SOC) stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m). A high-resolution (1 m) land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0–150 cm) is estimated to be 8.3 ± 8.0 kg C m−2 and the SOC stored in the top meter (0–100 cm) to be 7.7 ± 6.2 kg C m−2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions  >  30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in post-permafrost landscapes.



2019 ◽  
Vol 5 (1) ◽  
pp. 1-26 ◽  
Author(s):  
Maude Pelletier ◽  
Michel Allard ◽  
Esther Levesque

Permafrost thaw, tundra shrubification, and changes in snow cover properties are documented impacts of climate warming, particularly in subarctic regions where discontinuous permafrost is disappearing. To obtain some insight into those changes, permafrost, active layer thickness, vegetation, snow cover, ground temperature, soil profiles, and carbon content were surveyed in an integrated approach in six field plots along a chronosequence of permafrost thaw on an ice-rich silty soil. Historical air photographs and dendrochronology provided the chronological context. Comparison of the plots reveals a positive feedback effect between thaw settlement, increased snow cover thickness, shrub growth, increase in soil temperature, and the process of permafrost decay. By the end of the sequence permafrost was no longer sustainable. Along the estimated 90 year duration of the chronosequence, the originally centimeter-thin pedogenic horizons under mosses and lichens increased to a thickness of nearly 65 cm under shrubs and trees. Snow cover increased from negligible to over 2 m. The thickness of soil organic layers and soil organic matter content increased manyfold, likely a result of the increased productivity in the shrub-dominated landscape. The results of this study strongly suggest that permafrost ecosystems in the subarctic are being replaced under climate warming by shrub and forest ecosystems enriched in carbon on more evolved soils.



Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1287
Author(s):  
Wenhui Liu ◽  
Changwei Xie ◽  
Wu Wang ◽  
Guiqian Yang ◽  
Yuxin Zhang ◽  
...  

Lakes on the Qinghai–Tibetan Plateau (QTP) have experienced significant changes, especially the prevailing lake expansion since 2000 in the endorheic basin. The influence of permafrost thawing on lake expansion is significant but rarely considered in previous studies. In this study, based on Landsat images and permafrost field data, the spatial-temporal area changes of lakes of more than 5 km2 in the endorheic basin on the QTP during 2000–2017 is examined and the impact of permafrost degradation on lake expansion is discussed. The main results are that permafrost characteristics and its degradation trend have close relationships with lake changes. Lake expansion in the endorheic basin showed a southwest–northeast transition from shrinking to stable to rapidly expanding, which corresponded well with the permafrost distribution from island-discontinuous to seasonally frozen ground to continuous permafrost. A dramatic lake expansion in continuous permafrost showed significant spatial differences; lakes expanded significantly in northern and eastern continuous permafrost with a higher ground ice content but slightly in southern continuous permafrost with a lower ground ice content. This spatial pattern was mainly attributed to the melting of ground ice in shallow permafrost associated with accelerating permafrost degradation. Whereas, some lakes in the southern zones of island-discontinuous permafrost were shrinking, which was mainly because the extended taliks arising from the intensified permafrost degradation have facilitated surface water and suprapermafrost groundwater discharge to subpermafrost groundwater and thereby drained the lakes. Based on observation and simulated data, the melting of ground ice at shallow depths below the permafrost table accounted for 21.2% of the increase in lake volume from 2000 to 2016.



Author(s):  
Cory Wiechnik ◽  
Raymond Boivin ◽  
Jim Henderson ◽  
Mark Bowman

As the natural gas pipeline system in Western Canada expands northward, it traverses the discontinuous permafrost zone. As the ground temperature of the frozen soil in this zone is just below freezing, it can be expected that within the design life of a pipeline the permafrost adjacent to it will melt due to the disturbance of the insulating cover by construction activities. Differential settlement at the thawing frozen/unfrozen soil interfaces gives rise to pipeline strain. Based on the calculated settlement and resulting strain level, a cost effective mechanical or civil design solution can be selected to mitigate the differential settlement problem. Since these design solutions can be costly, it is desirable to combine them with a pipeline route that traverses the least amount of discontinuous permafrost terrain while minimizing the overall length of the pipeline. This paper will detail the framework utilized to select the routing for a package of pipeline projects in northwestern Alberta. The process began with a review of the state of the art in permafrost engineering in order to benefit from past experiences. Airphoto interpretation and terrain mapping were performed for potential pipeline corridors. Preliminary routing options through the corridors were chosen from this mapping information that minimized both pipeline length and amount of permafrost terrain traversed. The next step was to collect field data for each route that would determine the extent and characteristics of the permafrost. Essentially two sets of field data were collected: geophysical mapping of representative sections of each terrain type and physical sampling of the permafrost. Boreholes were located following field interpretation of the geophysical data to ensure they were optimally located to help in calibration of the geophysical data. Permafrost samples were tested in the laboratory for thaw settlement. Anticipated thaw settlements were used to estimate pipe strain levels. This information was then extrapolated for the entire proposed pipeline route and used to finalize both the pipeline route and the differential settlement design options. Monitoring sites will be instrumented to obtain data on the longer term performance of the pipeline, as well as for assessing permafrost degradation effects on the right-of-way such as settlement and impact on drainage patterns. It is believed that the increased front end effort will result in lower operating costs and an overall reduced life-cycle cost. This basic design methodology can be applied to any project that traverses discontinuous permafrost terrain.



Sign in / Sign up

Export Citation Format

Share Document