scholarly journals An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO x and VOC Control as Mitigation Strategies

2019 ◽  
Vol 46 (9) ◽  
pp. 4971-4979 ◽  
Author(s):  
C. C. Womack ◽  
E. E. McDuffie ◽  
P. M. Edwards ◽  
R. Bares ◽  
J. A. Gouw ◽  
...  
2018 ◽  
Vol 11 (6) ◽  
pp. 27 ◽  
Author(s):  
Pengfei Zhang ◽  
Samuel T. Ariaratnam

The rate of urbanization has been impacted by global economic growth. A strong economy results in more people moving to already crowded urban centers to take advantage of increased employment opportunities often resulting in sprawling of the urban area. More natural land resources are being exploited to accommodate these anthropogenic activities. Subsequently, numerous natural land resources such as green areas or porous soil, which are less flood-prone and more permeable are being converted into buildings, parking lots, roads and underground utilities that are less permeable to storm water runoff from rain events. With the diminishing of the natural landscape that can drain storm water during a rainfall event, urban underground drainage systems are being designed and built to tackle the excess runoff resulting from urbanization. However, the rapid pace of urbanization has profoundly affected the formation of urban runoff thus resulting in the existing underground drainage system being unable to handle current flow conditions. This paper discusses storm water impacts in urbanized areas globally by reviewing historical storm water events and mitigation strategies accompanied with runoff reduction performance that are considered simultaneously for the purpose of relieving the stress on underground drainage systems. It was found that the stormwater impact on ten selected typical urban areas were enormously destructive followed by billions of direct economy loss, fatalities, damaged properties and residents’ relocations. Furthermore, the meta-analysis of selected six runoff mitigation methods indicated that the average runoff reduction percent ranged from 43% to 61% under different rain events in various installed sites across different event years.


Author(s):  
Jie Chang ◽  
Qiuju Deng ◽  
Moning Guo ◽  
Majid Ezzati ◽  
Jill Baumgartner ◽  
...  

Acute myocardial infarction (AMI) poses a serious disease burden in China, but studies on small-area characteristics of AMI incidence are lacking. We therefore examined temporal trends and geographic variations in AMI incidence at the township level in Beijing. In this cross-sectional analysis, 259,830 AMI events during 2007–2018 from the Beijing Cardiovascular Disease Surveillance System were included. We estimated AMI incidence for 307 consistent townships during consecutive 3-year periods with a Bayesian spatial model. From 2007 to 2018, the median AMI incidence in townships increased from 216.3 to 231.6 per 100,000, with a greater relative increase in young and middle-aged males (35–49 years: 54.2%; 50–64 years: 33.2%). The most pronounced increases in the relative inequalities was observed among young residents (2.1 to 2.8 for males and 2.8 to 3.4 for females). Townships with high rates and larger relative increases were primarily located in Beijing’s northeastern and southwestern peri-urban areas. However, large increases among young and middle-aged males were observed throughout peri-urban areas. AMI incidence and their changes over time varied substantially at the township level in Beijing, especially among young adults. Targeted mitigation strategies are required for high-risk populations and areas to reduce health disparities across Beijing.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3040
Author(s):  
Eulalia Jadraque Gago ◽  
Saioa Etxebarria Berrizbeitia ◽  
Rosalía Pacheco Torres ◽  
Tariq Muneer

This paper analyses Seville’s surface urban heat island (SUHI) phenomenon, comparing spatial and temporal patterns of land surface temperature (LST) during July 1987, 2000 and 2017. Landsat data captured throughout three July months were analyzed for the different years, techniques of geographic information systems, ecological variables and geospatial approaches and used to carry out the analysis. The results indicate that from 1987 to 2017, the averaged LST has increased by 9.1 °C in the studied area. The urban areas are colder than their surroundings, suggesting the role of baresoil and cultivated land in the reversal of the SUHI phenomenon. The results show that a fraction of green space has a high unstandardized coefficient (β) through the three time periods. A decreasing trend is also observed in the standardized β “fraction of impervious surface” in the three time periods. The linear regression analysis shows a negative relationship of mean LST with impervious surface fraction due to the presence of shadows projected by buildings, and a positive relationship with green space fraction caused by the influence of baresoil and cultivated land that inverts the LST behavior pattern. The study concludes that there is a need to implement SUHI mitigation strategies during the initial phases of engineering projects where the origin of this problem can be acted upon, since the process of creating streets and public space offers a valuable opportunity to restore the environmental quality and diminish the effects generated by climate change.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2162 ◽  
Author(s):  
Hyatt Green ◽  
Daniel Weller ◽  
Stephanie Johnson ◽  
Edward Michalenko

Fecal contamination of waterbodies due to poorly managed human and animal waste is a pervasive problem that can be particularly costly to address, especially if mitigation strategies are ineffective at sufficiently reducing the level of contamination. Identifying the most worrisome sources of contamination is particularly difficult in periurban streams with multiple land uses and requires the distinction of municipal, agricultural, domestic pet, and natural (i.e., wildlife) wastes. Microbial source-tracking (MST) methods that target host-specific members of the bacterial order Bacteroidales and others have been used worldwide to identify the origins of fecal contamination. We conducted a dry-weather study of Onondaga Creek, NY, where reducing fecal contamination has been approached mainly by mitigating combined sewer overflow events (CSOs). Over three sampling dates, we measured in-stream concentrations of fecal indicator bacteria; MST markers targeting human, ruminant, and canine sources; and various physical–chemical parameters to identify contaminants not attributable to CSOs or stormwater runoff. We observed that despite significant ruminant inputs upstream, these contaminants eventually decayed and/or were diluted out and that high levels of urban bacterial contamination are most likely due to failing infrastructure and/or illicit discharges independent of rain events. Similar dynamics may control other streams that transition from agricultural to urban areas with failing infrastructure.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 212 ◽  
Author(s):  
Minjoong J. Kim

This study investigated the sensitivity of nitrate aerosols to vehicular emissions in urban streets using a coupled computational fluid dynamics (CFD)–chemistry model. Nitrate concentrations were highest at the street surface level following NH3 emissions from vehicles, indicating that ammonium nitrate formation occurs under NH3-limited conditions in street canyons. Sensitivity simulations revealed that the nitrate concentration has no clear relationship with the NOx emission rate, showing nitrate changes of only 2% across among 16 time differences in NOx emissions. NOx emissions show a conflicting effect on nitrate production via decreasing O3 and increasing NO2 concentrations under a volatile organic compound (VOC)-limited regime for O3 production. The sensitivity simulations also show that nitrate aerosol is proportional to vehicular VOC and NH3 emissions in the street canyon. Changes of VOC emissions affect the nitrate aerosol and HNO3 concentrations through changes in the O3 concentration under a VOC-limited regime for O3 production. Nitrate aerosol concentration is influenced by vehicular NH3 emissions, which produce ammonium nitrate effectively under an NH3-limited regime for nitrate production. This research suggests that, when vehicular emissions are dominant in winter, the control of vehicular VOC and NH3 emissions might be a more effective way to degrade PM2.5 problems than the control of NOx.


2016 ◽  
Author(s):  
Mark L. Carroll ◽  
Molly E. Brown ◽  
Margaret R. Wooten ◽  
Joel E. Donham ◽  
Alfred B. Hubbard ◽  
...  

Abstract. As our climate changes through time there is an ever increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt MD conducted a study to collect temperature and humidity data at 15 minute intervals from 12 sites on center. These sites represented the major surface types on center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces on the center and the difference between the average value for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jyothi S. Menon ◽  
Richa Sharma

The urban population is subjected to multiple exposures of air pollution and heat stress and bear severe impacts on their health and well-being in terms of premature deaths and morbidity. India tops the list of countries with the highest air pollution exposure and hosts some of the most polluted cities in the world. Similarly, Indian cities are highly vulnerable to extreme heat with the frequency of heatwaves expected to increase several-fold in urban areas in India. It is reported that mitigating air pollution could reduce the rural-urban difference of the incoming radiation thus resulting in mitigation of the urban heat island effect. Since the interaction between urban heat and air pollution is dynamic and complex, both these factors should be considered by the urban authorities in designing mitigation strategies. Given the multi-functional nature and cost-effectiveness of Nature-Based Solutions (NbS), they appear to be the most appropriate remedy for environmental issues of urban areas, particularly in developing countries. In addition to improving public health (through the reduction in air pollution and urban heat), NbS also provides a wide range of co-benefits such as reducing energy cost and health costs as well as conservation of biodiversity. This review is an attempt to understand the potentials of NbS in co-mitigating air pollution and urban heat in Indian cities. A framework for the planning and design of NbS in Indian cities is also proposed based on the review that could help city planners and decision-makers in addressing these two issues in an integrated manner.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1014
Author(s):  
Sayantani M. Basak ◽  
Izabela A. Wierzbowska ◽  
Agnieszka Gajda ◽  
Marcin Czarnoleski ◽  
Maciej Lesiak ◽  
...  

Efforts to reduce human-wildlife-conflict are integral to wildlife management and conservation in urban habitats. In our study, we identified the HWC situations in urban areas of Krakow city, based on animal-vehicle collisions, intrusion to property, and damages. Hot spot analysis and Moran’s Index were used to identify the location of maximum potential conflict. We analysed 2512 incidents in which animals (of which 85% included mammals and 15% birds) were involved in conflict situations between 2007 and 2013. A significant seasonal variation was observed among the animals. We also identified roe deer (50.23%), red fox (22.80%) and wild boar (11.40%), as the three prominent conflicted animals. Getis–Ord Gi* analysis was used to identify spatial clusters of conflict. A significant spatial association was found in the location of clusters of hot spots in specific land-use based on Moran’s Index. Hot spots of roe deer and wild boar were high in grasslands and in forest and for red fox in built-up area. The results underscore the notion that conservation and wildlife management efforts must take into account differences in the seasonality of HWC among species. This information can be used to inform mitigation strategies.


2019 ◽  
Vol 8 (12) ◽  
pp. 579 ◽  
Author(s):  
Zohreh Masoumi ◽  
John van L.Genderen ◽  
Jamshid Maleki

A comprehensive fire risk assessment is very important in dense urban areas as it provides an estimation of people at risk and property. Fire policy and mitigation strategies in developing countries are constrained by inadequate information, which is mainly due to a lack of capacity and resources for data collection, analysis, and modeling. In this research, we calculated the fire risk considering two aspects, urban infrastructure and the characteristics of a high-rise building for a dense urban area in Zanjan city. Since the resources for this purpose were rather limited, a variety of information was gathered and information fusion techniques were conducted by employing spatial analyses to produce fire risk maps. For this purpose, the spatial information produced using unmanned aerial vehicles (UAVs) and then attribute data (about 150 characteristics of each high-rise building) were gathered for each building. Finally, considering high-risk urban infrastructures, like the position of oil and gas pipes and electricity lines and the fire safety analysis of high-rise buildings, the vulnerability map for the area was prepared. The fire risk of each building was assessed and its risk level was identified. Results can help decision-makers, urban planners, emergency managers, and community organizations to plan for providing facilities and minimizing fire hazards and solve some related problems to reduce the fire risk. Moreover, the results of sensitivity analysis (SA) indicate that the social training factor is the most effective causative factor in the fire risk.


2009 ◽  
Vol 4 (2) ◽  
pp. 135-141
Author(s):  
Nobuo Fukuwa ◽  
◽  
Jun Tobita ◽  
Masafumi Mori ◽  
Hiroto Takahashi ◽  
...  

Considering the increased population and functionality of urban areas, we have studied the prediction of damages to and disaster mitigation strategies for urban areas which may be devastated when large disaster strikes. We have developed high-precision, high-resolution subsurface soil structure models in Chukyo Area including Nagoya city, by which strong ground motions are first predicted for every site of the area using a pseudo-empirical Green’s function method. Next, major damages are predicted based on earthquake response analyses of various structures such as energy facilities in reclaimed areas, industrial plants in alluvial plains, and high-rise buildings and ordinary school buildings in urban areas. We then have attempted to quantify disaster response capabilities of urban areas to set the target level for disaster mitigation countermeasures. Moreover, we have explained newly developed simulation tools for guiding individual residents to take disaster mitigation precautions by themselves.


Sign in / Sign up

Export Citation Format

Share Document