Role of combustion-generated carbon particles in the absorption of solar radiation in the Arctic haze

1984 ◽  
Vol 11 (5) ◽  
pp. 461-464 ◽  
Author(s):  
H. Rosen ◽  
A. D. A. Hansen
2020 ◽  
Author(s):  
Marie Sicard ◽  
Masa Kageyama ◽  
Pascale Braconnot ◽  
Sylvie Charbit

<p>The Last Interglacial (129 – 116 ka BP) is a time period with a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the present. In particular, these changes amplify the Arctic climate seasonality. They induce warmer summers and colder winters in the high latitudes of the Northern Hemisphere. Such surface conditions favour a huge retreat of the arctic sea ice cover.<br>In this study, we try to understand how this solar radiation anomaly spreads through the surface and impacts the seasonal arctic sea ice. Using IPSL-CM6A-LR model outputs, we decompose the surface energy budget to identify the role of atmospheric and oceanic key processes beyond 60°N and its changes compared to pre-industrial. We show that solar radiation anomaly is greatly reduced when it reaches the Earth’s surface, which emphasizes the role of clouds and water vapor transport.<br>The results are also compared to other PMIP4-CMIP6 model simulations. We would like to thank PMIP participants for producing and making available their model outputs.</p>


Author(s):  
Vyacheslav I. Polyakov ◽  
◽  
Evgeny V. Abakumov ◽  
Rustam Kh. Tembotov ◽  
◽  
...  

Black carbon is considered a product of the incomplete combustion of fossil fuels and materials that originated from volcanic eruptions or were emitted during wildfires. It is a strong light-absorbing component that has many atmospheric and surface effects in terrestrial and glacial ecosystems. Normally, black carbon is presented as a solid particle, consisting mainly of pure carbon, which absorbs solar radiation at all wavelengths. Some black carbon particles are amended by a mineral compound, though black carbon substances are normally dark or greyish dark. Black carbon is the most active part of suspended particles in the atmosphere and on glacial surfaces, absorbing solar radiation, the main component of ash, which consists of carbon particles with impurities in the form of mineral particles and also contains carbon of biogenic origin. In this paper, we have analyzed the literature on black carbon and its effect on deglaciation processes in the Earth’s polar and mountainous regions. The physical, chemical, and microbiological composition of black carbon accumulations were studied using the examples of the Arctic, the Antarctic, and the Central Caucasus. Potential sources and conditions of the transportation of black carbon into the polar zone and their effect on ice and snow have also been discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Gerry K. Schwalfenberg

This paper looks at the environmental role of vitamin D and solar radiation as risk reduction factors in autoimmune disease. Five diseases are considered: multiple sclerosis, type 1 diabetes, rheumatoid arthritis, autoimmune disease of the thyroid, and inflammatory bowel disease. Clinical relevant studies and factors that may indicate evidence that autoimmune disease is a vitamin D-sensitive disease are presented. Studies that have resulted in prevention or amelioration of some autoimmune disease are discussed. An example of the utility of supplementing vitamin D in an unusual autoimmune disease, idiopathic thrombocytic purpura, is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.


2021 ◽  
pp. 186810262110186
Author(s):  
Patrik Andersson

Research confirms that China is becoming more engaged in the Arctic. However, international relations scholarship often extrapolates from relatively few instances of activity to wide-ranging claims about Chinese priorities. Fortunately, Chinese political discourse is organised by labels that allow us to study how the Arctic is classified and ranked along China’s other foreign policy priorities. This article analyses two such classifications – “important maritime interest” and “strategic new frontier,” exploring how they have come about, what they mean, and how they add political priority to the Arctic. It argues that hierarchies are constructed in two ways: by adding gradients and by including/excluding categories of priority. It views categories as performative: they not only convey information about character and relative importance of interests but are also used for achieving different objectives. By focusing on foreign policy classifications, the article contributes to a more nuanced and precise understanding of China’s Arctic interests.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


2015 ◽  
Vol 14 (11) ◽  
pp. 2007-2013 ◽  
Author(s):  
Nadia Diovisalvi ◽  
Armando M. Rennella ◽  
Horacio E. Zagarese

A schematic representation of the seasonal cycle of rotifer in L. Chascomús. In this figure the relative abundances of the three dominant rotifer species are expressed as fractions of the estimated clear-sky mean daily incident solar radiation.


Sign in / Sign up

Export Citation Format

Share Document