Efficient lentiviral transduction of liver requires cell cycling in vivo

10.1038/71673 ◽  
2000 ◽  
Vol 24 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Frank Park ◽  
Kazuo Ohashi ◽  
Winnie Chiu ◽  
Luigi Naldini ◽  
Mark A. Kay
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


2019 ◽  
Vol 316 (6) ◽  
pp. C815-C827 ◽  
Author(s):  
Yinyan Yue ◽  
Ziqiang Luo ◽  
Zhengchang Liao ◽  
Liming Zhang ◽  
Shuai Liu ◽  
...  

We studied the role of bone marrow mesenchymal stem cells (MSCs) in our established model of bronchopulmonary dysplasia (BPD) induced by intrauterine hypoxia in the rat. First, we found that intrauterine hypoxia can reduce the number of MSCs in lungs and bone marrow of rat neonates, whereas the administration of granulocyte colony-stimulating factor or busulfan to either motivate or inhibit bone marrow MSCs to lungs altered lung development. Next, in vivo experiments, we confirmed that intrauterine hypoxia also impaired bone marrow MSC proliferation and decreased cell cycling activity. In vitro, by using the cultured bone marrow MSCs, the proliferation and the cell cycling activity of MSCs were also reduced when N-methyl-d-aspartic acid (NMDA) was used as an NMDA receptor (NMDAR) agonist. When MK-801 or memantine as NMDAR antagonists in vitro or in vivo was used, the reduction of cell cycling activity and proliferation were partially reversed. Furthermore, we found that intrauterine hypoxia could enhance the concentration of glutamate, an amino acid that can activate NMDAR, in the bone marrow of neonates. Finally, we confirmed that the increased concentration of TNF-ɑ in the bone marrow of neonatal rats after intrauterine hypoxia induced the release of glutamate and reduced the cell cycling activity of MSCs, and the latter could be partially reversed by MK-801. In summary, intrauterine hypoxia could decrease the number of bone marrow MSCs that could affect lung development and lung function through excessive activation of NMDAR that is partially caused by TNF-ɑ.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3448-3448
Author(s):  
Richard C. Koya ◽  
Nori Kasahara ◽  
Takahiro Kimura ◽  
Antoni Ribas ◽  
Renata Stripecke

Abstract Conventional, ex vivo culture of monocytes with recombinant proteins for their differentiation into DCs involves considerable manipulation under “Good Manufacturing Practices” conditions, and is not only more labor intensive but importantly, after ex vivo produced DCs are administered, they lack the stimulatory signals to keep them alive and functional and therefore are short lived. Because of these problems, we have evaluated an one-hit lentiviral transduction approach for genetically modifying monocytes in order to promote autocrine and paracrine production of factors required for their differentiation into immature DCs. High-titer third generation self-inactivating lentiviral vectors expressing granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) efficiently achieved simultaneous and persistent co-delivery of the transgenes into purified human CD14+ monocytes. Co-expression of GM-CSF and IL-4 in monocytes was sufficient to induce their differentiation into lentivirus-modified DCs (“DC/LVs”), as evidenced by their morphology, immunophenotype and immune-function*. Mixed lymphocyte reactions showed that the T-cell stimulating activity of DC/LVs was superior to that of DCs grown by conventional methods. DC/LVs displayed efficient antigen-specific, MHC Class-I restricted stimulation of autologous CD8+ T-cells, as shown by IFN-G production and CTL assays. Importantly, DC/LVs could be maintained metabolically active and viable in culture for 2–3 weeks in the absence of exogenously added growth factors, unlike conventional DCs *. We are now evaluating whether DC/LVs can be re-infused immediately after gene transfer to achieve stable and long-lasting differentiation in vivo. Additionally, the genetic engineering of monocytes is anticipated to generate DCs after one hit of lentiviral transduction, instead of the three consecutive steps for development of DCs (differentiation, maturation, gene delivery of tumor antigens). We have thus established a mouse model for testing DC/LVs in vivo for the treatment of melanoma. Bone marrow cells from C57BL/6 mice transduced with lentiviral vectors expressing GM-CSF and IL-4 recapitulated the same DC/LV morphology and immunophenotype obtained in the human system. Mouse DC/LVs were also more viable in vitro and outperformed conventional mouse DCs in pilot immunization assays as followed by CTL assays and IFN-G ELISPOT. We are currently evaluating the immunotherapeutic efficacy of DC/LVs injected into mice developing B16 melanoma tumors. Co-delivery of a gene for DC maturation (CD40L) and of gene encoding a tumor-associated antigens (MART-1) is being performed. Our goal is to evaluate the implications of simultaneous co-expression of GM-CSF/ IL-4/ CD40L/ MART-1 in DC/LV differentiation and migration to lymph nodes in vivo, immunopotency and safety. Once these pre-clinical considerations are addressed, we foresee a broad clinical application of genetically engineered DCs for vaccination purposes against cancer and chronic infectious diseases.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 2081-2081
Author(s):  
Ghazaleh Tabatabai ◽  
Shanmugarajan Krishnan ◽  
Ana-Maria Florea ◽  
Karl Frei ◽  
Kathy Hasenbach ◽  
...  

2081 Background: Thymosin β4 (TB4) is a pleiotropic actin-sequestering polypeptide that is involved in wound healing and developmental processes. TB4 gene silencing promotes differentiation of neural progenitor cells whereas TB4 overexpression initiates cortical folding of developing brain hemispheres. However, a role of TB4 in malignant gliomas has not yet been investigated. Methods: We first analyzed TB4 expression on tissue microarrays and performed REMBRANDT and TCGA database interrogations. We analyzed TB4 expression in a panel of 8 long-term glioma cell lines and 7 glioma-initiating cell lines. Using lentiviral transduction, we modulated TB4 expression in LNT-229, U87MG and the glioma-initiating cell line GS-2. We studied clonogenic survival, migration, invasion, self-renewal, differentiation capacity of TB4-depleted or TB4-overexpressing glioma cells in vitro and tumorigenicity upon orthotopic implantation in vivo. Finally, we performed an Affymetrix gene chip analysis to unravel the molecular network of TB4 signaling effects. Results: TB4 expression increased with the grade of malignancy in gliomas and correlated with patient survival. In vitro, TB4 gene silencing by lentiviral transduction decreased migration, invasion, growth and self-renewal, and promoted differentiation and the susceptibility to undergo apoptotic cell death upon nutrient depletion in LNT-229, U87MG and the glioma stem-cell line GS2, respectively. In vivo, survival of nude mice bearing tumors derived from TB4-depleted glioma cells was improved and the tumorigenicity of the GS2 glioma stem-cell line was decreased. The gene expression pattern was shifted from the mesenchymal towards the pro-neural gene signature upon TB4 gene silencing. The clustering of differentially regulated genes involved TGF-β and p53 signaling networks. Conclusions: TB4 may be a key regulator of malignancy in glioblastoma and therefore a novel candidate molecular target for anti-glioma therapies.


2005 ◽  
Vol 19 (7) ◽  
pp. 1-17 ◽  
Author(s):  
G. F. Lemkine ◽  
A. Raji ◽  
G. Alfama ◽  
N. Turque ◽  
Z. Hassani ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 813-822 ◽  
Author(s):  
Thierry VandenDriessche ◽  
Lieven Thorrez ◽  
Luigi Naldini ◽  
Antonia Follenzi ◽  
Lieve Moons ◽  
...  

Abstract High-titer self-inactivating human immunodeficiency virus type-1 (HIV-1)–based vectors expressing the green fluorescent protein reporter gene that contained the central polypurine and termination tract and the woodchuck hepatitis virus posttranscriptional regulatory element were constructed. Transduction efficiency and biodistribution were determined, following systemic administration of these improved lentiviral vectors. In adult severe combined immunodeficiency (SCID) mice, efficient stable gene transfer was achieved in the liver (8.0% ± 6.0%) and spleen (24% ± 3%). Most transduced hepatocytes and nonhepatocytes were nondividing, thereby obviating the need to induce liver cell proliferation. In vivo gene transfer with this improved lentiviral vector was relatively safe since liver enzyme concentration in the plasma was only moderately and transiently elevated. In addition, nondividing major histocompatibility complex class II–positive splenic antigen-presenting cells (APCs) were efficiently transduced in SCID and normal mice. Furthermore, B cells were efficiently transduced, whereas T cells were refractory to lentiviral transduction in vivo. However, in neonatal recipients, lentiviral transduction was more widespread and included not only hepatocytes and splenic APCs but also cardiomyocytes. The present study suggests potential uses of improved lentiviral vectors for gene therapy of genetic blood disorders resulting from serum protein deficiencies, such as hemophilia, and hepatic disease. However, the use of liver-specific promoters may be warranted to circumvent inadvertent transgene expression in APCs. In addition, these improved lentiviral vectors could potentially be useful for genetic vaccination and treatment of perinatal cardiac disorders.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anna M. D. Végh ◽  
Arie O. Verkerk ◽  
Lucía Cócera Ortega ◽  
Jianan Wang ◽  
Dirk Geerts ◽  
...  

Electronic pacemakers still face major shortcomings that are largely intrinsic to their hardware-based design. Radical improvements can potentially be generated by gene or cell therapy-based biological pacemakers. Our previous work identified adenoviral gene transfer of Hcn2 and SkM1, encoding a “funny current” and skeletal fast sodium current, respectively, as a potent combination to induce short-term biological pacing in dogs with atrioventricular block. To achieve long-term biological pacemaker activity, alternative delivery platforms need to be explored and optimized. The aim of the present study was therefore to investigate the functional delivery of Hcn2/SkM1 via human cardiomyocyte progenitor cells (CPCs). Nucleofection of Hcn2 and SkM1 in CPCs was optimized and gene transfer was determined for Hcn2 and SkM1 in vitro. The modified CPCs were analyzed using patch-clamp for validation and characterization of functional transgene expression. In addition, biophysical properties of Hcn2 and SkM1 were further investigated in lentivirally transduced CPCs by patch-clamp analysis. To compare both modification methods in vivo, CPCs were nucleofected or lentivirally transduced with GFP and injected in the left ventricle of male NOD-SCID mice. After 1 week, hearts were collected and analyzed for GFP expression and cell engraftment. Subsequent functional studies were carried out by computational modeling. Both nucleofection and lentiviral transduction of CPCs resulted in functional gene transfer of Hcn2 and SkM1 channels. However, lentiviral transduction was more efficient than nucleofection-mediated gene transfer and the virally transduced cells survived better in vivo. These data support future use of lentiviral transduction over nucleofection, concerning CPC-based cardiac gene delivery. Detailed patch-clamp studies revealed Hcn2 and Skm1 current kinetics within the range of previously reported values of other cell systems. Finally, computational modeling indicated that CPC-mediated delivery of Hcn2/SkM1 can generate stable pacemaker function in human ventricular myocytes. These modeling studies further illustrated that SkM1 plays an essential role in the final stage of diastolic depolarization, thereby enhancing biological pacemaker functioning delivered by Hcn2. Altogether these studies support further development of CPC-mediated delivery of Hcn2/SkM1 and functional testing in bradycardia models.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2323-2323
Author(s):  
Irmela Jeremias ◽  
Binje Vick ◽  
Maya Rothenberg ◽  
Nadine Sandhöfer ◽  
Michela Carlet ◽  
...  

Abstract We introduced bioluminescence in vivo imaging as a novel, sensitive and reliable readout parameter for preclinical treatment trials in the individualized model of patients' primary AML cells growing in mice. Novel treatment approaches require preclinical in vivo evaluation. While the individualized xenograft mouse model of individual patients AML cells growing in mice inherits the advantage of mimicking the broad genetic heterogeneity of AML, disease monitoring remained challenging so far due to the lack of appropriate readout parameters. In the individualized mouse model of AML, primary patients' AML cells are xenotransplanted into immuno-compromised mice. Here, we aimed at increasing sensitivity and reliability of disease monitoring in the individualized mouse model of patient-derived AML. Towards this aim, we engrafted primary tumor cells from 16 adult patients with AML. 8/16 (50%) samples allowed serial transplantation and thereby generation of stable patient-derived xenograft (PDX) cells with constant characteristics regarding growth and immunophenotype. PDX cells were derived from genetically distinct patient samples, mimicking the known heterogeneity of AML. Targeted re-sequencing of 43 genes important for AML leukemogenesis revealed identical mutations in primary and PDX cells after initial or serial transplantation, except the loss of two minor subclones within two samples. Lentiviral transduction was established to genetically manipulate PDX cells and introduce stable expression of transgenes which was feasible in 7/8 PDX AML samples tested. Transgenic PDX cells were enriched by flow cytometry gating on a co-expressed fluorochrome. Recombinant expression of luciferase enabled bioluminescence in vivo imaging for reliable follow up of PDX cell leukemia growth in mice. Imaging was highly sensitive and detected a single PDX cell within 10,000 normal mouse bone marrow cells covering the clinically important situation of minimal disease. Furthermore, imaging facilitated reliable analysis of preclinical treatment trials, visualizing drug effects in single mice over time. Novel treatment approaches aim at eliminating AML propagating cells, and the limiting dilution transplantation assay represents the gold standard for determining frequency of AML propagating cells. Bioluminescence in vivo imaging facilitated quantifying AML propagating cells by determining engraftment as early as 5 weeks after cell transplantation. Taken together, we advanced the individualized mouse model of AML by introducing serial transplantation, lentiviral transduction and in vivo imaging. These improvements now allow sensitive and reliable preclinical treatment trials in patient-derived AML cells of various different genetic subgroups including AML propagating cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document