scholarly journals Autonomic Nerves in the Mammalian Choroid Plexus and Their Influence on the Formation of Cerebrospinal Fluid

1981 ◽  
Vol 1 (3) ◽  
pp. 245-266 ◽  
Author(s):  
Maria Lindvall ◽  
Christer Owman

The choroid plexuses of all ventricles receive a well-developed adrenergic and cholinergic innervation reaching both the secretory epithelium and the vascular smooth muscle cells. Also peptidergic nerves, containing vasoactive intestinal polypeptide, are present but primarily associated only with the vascular bed. A sympathetic inhibitory effect on the plexus epithelium has been indicated in determinations of carbonic anhydrase activity and by studies of various aspects of active transport in isolated plexus tissue. Pharmacological analysis in vitro has shown the choroidal arteries to possess both vasoconstrictory α-adrenergic and vasodilatory β-adrenergic receptors. Electrical stimulation of the sympathetic nerves, which originate in the superior cervical ganglia, induces as much as 30% reduction in the net rate of cerebrospinal fluid (CSF) production, while sympathectomy results in a pronounced increase, about 30% above control, in the CSF formation. There is strong reason to believe that the choroid plexus is under the influence of a considerable sympathetic inhibitory tone under steady-state conditions. From pharmacological and biochemical experiments it is suggested that the sympathomimetic reduction in the rate of CSF formation is the result of a combined β-receptormediated inhibition of the secretion from the plexus epithelium and a reduced blood flow in the choroid plexus tissue resulting from stimulation of the vascular α-receptors. The choroid plexus probably also represents an important inactivation site and gate mechanism for sympathomimetic amines, as evidenced by considerable local activity of catechol- O-methyl transferase and monoamine oxidase, primarily type B. The CSF production rate is also reduced by cholinomimetic agents, suggesting the presence of muscarinic-type cholinergic receptors in the choroid plexus.

1979 ◽  
Vol 50 (5) ◽  
pp. 677-681 ◽  
Author(s):  
Steven K. Gudeman ◽  
Humbert G. Sullivan ◽  
Michael J. Rosner ◽  
Donald P. Becker

✓ The authors report a patient with bilateral papillomas of the choroid plexus of the lateral ventricles with documentation of cerebrospinal fluid (CSF) hypersecretion causing hydrocephalus. Special attention is given to the large volume of CSF produced by these tumors (removal of one tumor reduced CSF outflow by one-half) and to the fact that CSF diversion was not required after both tumors were removed. Since tumor removal alone was sufficient to stop the progression of hydrocephalus, we feel that this case supports the concept that elevated CSF production by itself is sufficient to cause hydrocephalus in patients with papillomas of the choroid plexus.


2000 ◽  
Vol 278 (2) ◽  
pp. H404-H411 ◽  
Author(s):  
Deborah H. Damon

Sympathetic nerves are purported to stimulate blood vessel growth. The mechanism(s) underlying this stimulation has not been determined. With use of an in vitro coculture model, the present study tests the hypothesis that sympathetic neurons stimulate the growth of vascular smooth muscle (VSM) and evaluates potential mechanisms mediating this stimulation. Sympathetic neurons isolated from superior cervical ganglia (SCG) stimulated the growth of VSM. Growth of VSM in the presence of SCG (856 ± 81%) was significantly greater than that in the absence of SCG (626 ± 66%, P < 0.05). SCG did not stimulate VSM growth in transwell cocultures. An antibody that neutralized the activity of transforming growth factor-β2 (TGF-β2) inhibited SCG stimulation of VSM growth in coculture. SCG stimulation of VSM growth was also inhibited by an endothelin A receptor antagonist. These data suggest novel mechanisms for sympathetic modulation of vascular growth that may play a role in the physiological and/or pathological growth of the vasculature.


1990 ◽  
Vol 259 (4) ◽  
pp. F539-F544 ◽  
Author(s):  
C. S. Park ◽  
P. S. Doh ◽  
R. E. Carraway ◽  
G. G. Chung ◽  
J. C. Fray ◽  
...  

This study investigated the cellular mechanism of stimulation of renin secretion by the loop diuretic ethacrynic acid (EA) in rabbit renal cortical slices. The diuretic rapidly stimulated renin secretion reversibly and in a concentration-dependent manner. The stimulation was independent of the presence of Na+, Cl-, Ca2+, or other loop diuretics (furosemide and bumetanide) in the incubation media, suggesting that the stimulation in vitro was not dependent on the inhibitory effect of the diuretic on Na(+)-K(+)-2Cl-cotransport. The findings do not support the macula densa hypothesis. The stimulation by the diuretic was prevented and reversed by thiols such as cysteine and dithiothreitol, which also prevented and reversed the stimulation of renin secretion by the nondiuretic sulfhydryl reagent P-chloromercuriphenyl-sulfonate (PCMPS). These results suggest that EA stimulates renin secretion in vitro via reversible chemical reactions with specific membrane sulfhydryl groups that may have no functional role in the Na(+)-K(+)-2Cl- cotransport.


1977 ◽  
Author(s):  
D.H. Cowan ◽  
M. Kikta ◽  
D. Baunach

Studies of cAMP in human platelets exposed to ethanol were done to assess one possible mechanism for ethanol-related platelet dysfunction. Ingestion of ethanol by 3 subjects produced blood ethanol levels from 65-76 mM. Thrombocytopenia occurred in 1 subject and impaired platelet function occurred in all. Platelet cAMP decreased 36,51, and 59% below control levels. Infusion of ethanol to 2 normals produced blood ethanol levels of 43 mM and decreased platelet cAMP by 15% and 22%. Incubation of normal platelets with 86 mM ethanol in vitro decreased cAMP from 13.8 ± 2.9 (1 SD) to 9.4 ± 3.5 (p<0.02). By contrast, ethanol did not impair the increase in cAMP that occurred with 1.3 μM PGE1. Further, ethanol enhanced the increase in cAMP produced by 2.0 mM papaverine (Pap) by 160-220% and that produced by Pap + PGE1 by 58%. Dopamine, 0.1 mM, caused a 23% decrease in the basal level of cAMP, a 31% decrease below the subnormal level of cAMP seen with ethanol alone, and a 41% reduction in the increased level of cAMP produced by Pap + ethanol. The effect of ethanol on platelet cAMP metabolism is complex. Ethanol reduces basal levels of cAMP, does not decrease elevated levels that result from PGE1 stimulation of adenylate cyclase, and augments the inhibitory effect of Pap on platelet phosphodiesterase (PDE). Despite causing a decrease in basal cAMP levels, ethanol may impair platelet function by potentiating the effect of agents or other conditions which increase cAMP. The effect of ethanol on Pap-stimulated PDE activity may be blocked by dopamine, a neuropharmacologic agent that is actively accumulated by platelets.


1975 ◽  
Vol 228 (5) ◽  
pp. 1510-1518 ◽  
Author(s):  
R Spector ◽  
AV Lorenzo

Free myo-inositol (inositol) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the cerebrospinal fluid was measured in rabbits. In vivo, inositol transport from blood into choroid plexus, CSF, and brain was saturable with an apparent affinity constant (K-t) of approximately 0.1 mM. The relative turnover of free inositol in choroid plexus (16 percent/h) was higher than in CSF 4percent/h) and brain (0.3percent/h) when meausred by tissue penetration of tracer [3-H]-labeled inositol injected into blood. However, the passage of tracer inositol was not greater than the passage of mannitol into brain when measured 15 s after a rapid injection of inositol and mannitol into the left common carotid artery. From the CSF, the clearance of inositol relative to inulin was saturable after the intraventricular injection of various concentrations of inositol and inulin. Moreover, a portion of the inositol cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [3-H-labeled myo-inositol against a concentration gradient by a specific, active, saturable process with a K-t of 0.2 mM inositol. These results were interpreted as showing that the entry of inositol into the central nervous system from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.


1980 ◽  
Vol 238 (1) ◽  
pp. C27-C33 ◽  
Author(s):  
M. S. Kannan ◽  
E. E. Daniel

The structural bases for myogenic and neurogenic control of canine tracheal smooth muscle were studied. At optimum lengths, strips of muscle showed insignificant neurogenic or myogenic tone. Atropine and/or tetrodotoxin blocked the contractile responses elicited on electrical field stimulation of intrinsic nerves. After raising the tone with tetraethylammonium ion and in the presence of atropine, field stimulation of nerves caused a relaxation, a major component of which was blocked by propranolol and/or tetrodotoxin, suggesting an effect mediated through interaction of mediator released from sympathetic nerves with beta-adrenergic receptors. Electron microscopic studies revealed gap junctions between extensions of smooth-muscle cells and a sparse innervation. The axonal varicosities, corresponding to cholinergic (predominantly) and adrenergic (occasionally) nerves, were seen predominantly in the clefts between cell bundles. The physiological responses were compared with the morphological features. Although this muscle exhibits multiunit behavior in vitro, implying that nerves initiate the coordinate activity, its ultrastructural features suggest a potential for single-unit behavior.


2021 ◽  
Author(s):  
Eva K. Oernbo ◽  
Annette B. Steffensen ◽  
Pooya Razzaghi Khamesi ◽  
Trine L. Toft-Bertelsen ◽  
Dagne Barbuskaite ◽  
...  

AbstractDisturbances in the brain fluid balance can lead to life-threatening elevation in the intracranial pressure (ICP), which represents a vast clinical challenge. Nevertheless, the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved, thus preventing targeted and efficient pharmaceutical therapy of cerebral pathologies involving elevated ICP. Here, we employed experimental rats to demonstrate low osmotic water permeability of the choroid plexus, lack of an osmotic gradient across this tissue, and robust CSF secretion against osmotic gradients. Together, these results illustrate that CSF secretion occurs independently of conventional osmosis, which challenges the existing assumption that CSF production is driven entirely by bulk osmotic forces across the CSF-secreting choroid plexus. Instead, we reveal that the choroidal Na+/K+/Cl− cotransporter NKCC1, Na+/HCO3− cotransporter NBCe2, and Na+/K+-ATPase are actively involved in CSF production and propose a molecular mode of water transport supporting CSF production in this secretory tissue. Further, we demonstrate that inhibition of NKCC1 directly reduces the ICP, illustrating that altered CSF secretion may be employed as a strategy to modulate ICP. These insights identify new promising therapeutic targets against brain pathologies associated with elevated ICP.


Blood ◽  
1980 ◽  
Vol 56 (4) ◽  
pp. 625-632 ◽  
Author(s):  
R Sullivan ◽  
PJ Quesenberry ◽  
R Parkman ◽  
KS Zuckerman ◽  
RH Levey ◽  
...  

Abstract Prompted by previous reports that in certain patients with aplastic anemia, cell-mediated autoimmune suppression of myeloid stem cell proliferation may be demonstrable in vitro, we studied the effects of bone marrow lymphocytes from 18 patients with myeloid aplasia on the proliferation of committed granulocytic-monocytic progenitor cells (CFU- C). When assayed in soft agar cultures, marrow suspensions from 10 patients with aplastic anemia contained significantly fewer viable CFU- C than similar cell preparations from control subjects. To deplete marrow cell suspensions of lymphocytes, we employed rabbit anti-human thymocyte serum (ATS), which after multiple adsorptions exhibited marked cytotoxicity for human B and T lymphocytes but had negligible effect on normal CFU-C proliferation. Preincubation of marrow samples from 12 patients with ATS and complement resulted in no inhibition or enhancement of CFU-C growth. In further experiments, marrow cells from 8 patients were incubated with marrow from control subjects prior to CFU-C culture. No suppression of donor CFU-C proliferation was observed in any of these studies, and in 4 cocultures, mixture of the 2 marrow suspensions resulted in stimulation of CFU-C growth. Using these assays, we detected no evidence of cell-mediated inhibition of CFU-C proliferation in any of the 18 patients that we evaluated. Our data support the conclusion that in the majority of patients with aplastic anemia, an absolute deficiency of hemopoietic stem cells is present within the marrow that does not appear to be effected or sustained by suppressor lymphocytes. Whether the reduction of viable stem cells is the cause or the consequence of the process that leads to marrow failure remains unknown.


1985 ◽  
Vol 248 (3) ◽  
pp. G299-G306
Author(s):  
T. A. Miller ◽  
J. M. Henagan ◽  
Y. J. Kuo ◽  
L. L. Shanbour

By use of an in vitro canine gastric mucosal preparation, we evaluated the effects of ethanol (2, 4, 6, and 8%, vol/vol) and indomethacin (2.2 X 10(-4)M), with and without 16,16-dimethyl PGE2 pretreatment, on net sodium transport (JNanet) (mucosal to serosal) across gastric epithelium. Although administration of 2 or 4% ethanol to the mucosal bathing solution had no appreciable inhibitory effects on sodium transport, 6 and 8% ethanol and indomethacin significantly inhibited JNanet when compared with untreated control mucosa. This effect was accompanied by inhibition of transmucosal potential difference (PD) and short-circuit current (Isc). In other mucosae exposed to dimethyl PGE2 (8 X 10(-6) M) in the serosal bathing solution, significant increases in JNanet, PD, and Isc were noted when compared with control mucosa. Addition of 6 or 8% ethanol to the mucosal solution of dimethyl PGE2-pretreated tissue resulted in significant decreases in PD, Isc, and JNanet below control values that were not significantly different from mucosa exposed to 6 and 8% ethanol without PG pretreatment. When indomethacin was added to the mucosal solution following dimethyl PGE2 pretreatment, only slight decreases in PD and Isc below control levels were observed, and the inhibitory effects on JNanet induced by indomethacin without such treatment were abolished. These findings suggest that stimulation of JNanet by prostaglandin may play a role in its ability to prevent indomethacin damage to gastric epithelium but does not appear to be of importance in mediating protection against ethanol damage.


Sign in / Sign up

Export Citation Format

Share Document