scholarly journals Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Janelle C. Arthur ◽  
Raad Z. Gharaibeh ◽  
Marcus Mühlbauer ◽  
Ernesto Perez-Chanona ◽  
Joshua M. Uronis ◽  
...  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yasamin Dabiri ◽  
Sara Kalman ◽  
Clara-Marie Gürth ◽  
Jee Young Kim ◽  
Viola Mayer ◽  
...  

2021 ◽  
Author(s):  
Laura Pulcini ◽  
Elisa Gamalero ◽  
Antonella Costantini ◽  
Enrico Tommaso Vaudano ◽  
Christos Tsolakis ◽  
...  

From the fundamental studies of Louis Pasteur in the XIX century to the current genomic analysis, the essential role of microorganisms in winemaking industry is well recognised. In the last decades, selected Saccharomyces cerevisiae strains with excellent fermentative behaviour have been widely commercialised in form of active dry yeasts. Currently, the production of organic and “natural” wines represents a new economically relevant trend in the wine sector. Based on this market demand, the use of industrial yeast starter could be perceived as non-organic practice and then, rejected. However, in order to preserve wines sensory quality, healthiness, and to avoid organoleptic defects given by undesirable microorganisms, the “yeast factor” (S. cerevisiae or non-Saccharomyces) cannot be ignored. The purpose of this chapter is to describe the methods of selection of wine yeasts focusing the attention on indigenous S. cerevisiae strains. In fact, the use of ecotypic yeasts may represent a good compromise between the needs of microbiologically controlled fermentation and a modern vision of wine as natural expression of its “terroir”, also from the microbiological point of view.


2019 ◽  
Vol 39 (6) ◽  
pp. 2689-2697 ◽  
Author(s):  
ARKADIUSZ GZIL ◽  
ŁUKASZ SZYLBERG ◽  
DAMIAN JAWORSKI ◽  
JOANNA DOMINIAK ◽  
IZABELA ZARĘBSKA ◽  
...  

Author(s):  
Yan Zhang ◽  
Gang Cao ◽  
Qing-gong Yuan ◽  
Jun-hui Li ◽  
Wen-Bin Yang

Empty spiracles homeobox 2 (EMX2) is a homeodomain-containing transcription factor that plays an essential role in tumorigenesis. However, to the best of our knowledge, the role of EMX2 in human colorectal cancer (CRC) is still unclear. Thus, the aim of this study was to investigate the expression and role of EMX2 in CRC. Our results demonstrated that the expression of EMX2 was greatly decreased in CRC tissues and cell lines. Overexpression of EMX2 significantly inhibited the proliferation in vitro and CRC tumor growth in nude mice. In addition, EMX2 also inhibited the migration and invasion of CRC cells. Mechanically, overexpression of EMX2 downregulated the expression levels of β-catenin, cyclin D1, and c-Myc in CRC cells. Taken together, our study demonstrates that EMX2 inhibits proliferation and tumorigenesis through inactivation of the Wnt/β-catenin pathway in CRC cells. Therefore, EMX2 may be a potential therapeutic target for the treatment of CRC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Hui Tang ◽  
Ji Zheng ◽  
Xuan Bai ◽  
Ke-Lin Yue ◽  
Jian-Hua Liang ◽  
...  

Angiogenesis and the tumor microenvironment (TME) play important roles in tumorigenesis. Forkhead box Q1 (FOXQ1) is a well-established oncogene in multiple tumors, including colorectal cancer (CRC); however, whether FOXQ1 contributes to angiogenesis and TME modification in CRC remains largely uncharacterized. Here, we demonstrate an essential role of FOXQ1-induced angiogenesis and macrophage recruitment in CRC that is related to its ability to promote the migration of endothelial cells and macrophages through activation of the EGF/PDGF pathway and the Twist1/CCL2 axis. We also provide evidence showing that the clinical significance between FOXQ1, Twist1, CCL2, and macrophage infiltration is associated with reduced 8-year survival in CRC patients. Our findings suggest FOXQ1 plays critical roles in the malignancy and progression of CRC, Therefore, FOXQ1 may serve as a therapeutic target for inhibiting angiogenesis and reducing macrophage recruitment in CRC.


2008 ◽  
Vol 84 (4) ◽  
pp. 981-987 ◽  
Author(s):  
Franck Pagès ◽  
Jérôme Galon ◽  
Wolf H. Fridman

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
N Lange ◽  
S Sieber ◽  
A Erhardt ◽  
G Sass ◽  
HJ Kreienkamp ◽  
...  

1995 ◽  
Vol 74 (05) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dominique Lasne ◽  
José Donato ◽  
Hervé Falet ◽  
Francine Rendu

SummarySynthetic peptides (TRAP or Thrombin Receptor Activating Peptide) corresponding to at least the first five aminoacids of the new N-terminal tail generated after thrombin proteolysis of its receptor are effective to mimic thrombin. We have studied two different TRAPs (SFLLR, and SFLLRN) in their effectiveness to induce the different platelet responses in comparison with thrombin. Using Indo-1/AM- labelled platelets, the maximum rise in cytoplasmic ionized calcium was lower with TRAPs than with thrombin. At threshold concentrations allowing maximal aggregation (50 μM SFLLR, 5 μM SFLLRN and 1 nM thrombin) the TRAPs-induced release reaction was about the same level as with thrombin, except when external calcium was removed by addition of 1 mM EDTA. In these conditions, the dense granule release induced by TRAPs was reduced by over 60%, that of lysosome release by 75%, compared to only 15% of reduction in the presence of thrombin. Thus calcium influx was more important for TRAPs-induced release than for thrombin-induced release. At strong concentrations giving maximal aggregation and release in the absence of secondary mediators (by pretreatment with ADP scavengers plus aspirin), SFLLRN mobilized less calcium, with a fast return towards the basal level and induced smaller lysosome release than did thrombin. The results further demonstrate the essential role of external calcium in triggering sustained and full platelet responses, and emphasize the major difference between TRAP and thrombin in mobilizing [Ca2+]j. Thus, apart from the proteolysis of the seven transmembrane receptor, another thrombin binding site or thrombin receptor interaction is required to obtain full and complete responses.


Sign in / Sign up

Export Citation Format

Share Document