scholarly journals Erratum: Corrigendum: Gene expression–based high-throughput screening (GE-HTS) and application to leukemia differentiation

2005 ◽  
Vol 37 (3) ◽  
pp. 328-328
Author(s):  
K Stegmaier ◽  
K N Ross ◽  
S A Colavito ◽  
S O'Malley ◽  
B R Stockwell ◽  
...  
2021 ◽  
Vol 22 (6) ◽  
pp. 3022
Author(s):  
Tatjana Ullmann ◽  
Sonja Luckhardt ◽  
Markus Wolf ◽  
Michael J. Parnham ◽  
Eduard Resch

This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.


2004 ◽  
Vol 36 (4) ◽  
pp. 427-427 ◽  
Author(s):  
K Stegmaier ◽  
K N Ross ◽  
S A Colavito ◽  
S O'Malley ◽  
B R Stockwell ◽  
...  

2003 ◽  
Vol 185 (16) ◽  
pp. 4973-4982 ◽  
Author(s):  
Jaime Bjarnason ◽  
Carolyn M. Southward ◽  
Michael G. Surette

ABSTRACT The importance of iron to bacteria is shown by the presence of numerous iron-scavenging and transport systems and by many genes whose expression is tightly regulated by iron availability. We have taken a global approach to gene expression analysis of Salmonella enterica serovar Typhimurium in response to iron by combining efficient, high-throughput methods with sensitive, luminescent reporting of gene expression using a random promoter library. Real-time expression profiles of the library were generated under low- and high-iron conditions to identify iron-regulated promoters, including a number of previously identified genes. Our results indicate that approximately 7% of the genome may be regulated directly or indirectly by iron. Further analysis of these clones using a Fur titration assay revealed three separate classes of genes; two of these classes consist of Fur-regulated genes. A third class was Fur independent and included both negatively and positively iron-responsive genes. These may reflect new iron-dependent regulons. Iron-responsive genes included iron transporters, iron storage and mobility proteins, iron-containing proteins (redox proteins, oxidoreductases, and cytochromes), transcriptional regulators, and the energy transducer tonB. By identifying a wide variety of iron-responsive genes, we extend our understanding of the global effect of iron availability on gene expression in the bacterial cell.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. sci-51-sci-51
Author(s):  
Todd R. Golub

Genomics holds particular potential for the elucidation of biological networks that underlie disease. For example, gene expression profiles have been used to classify human cancers, and have more recently been used to predict graft rejection following organ transplantation. Such signatures thus hold promise both as diagnostic approaches and as tools with which to dissect biological mechanism. Such systems-based approaches are also beginning to impact the drug discovery process. For example, it is now feasible to measure gene expression signatures at low cost and high throughput, thereby allowing for the screening libraries of small molecule libraries in order to identify compounds capable of perturbing a signature of interest (even if the critical drivers of that signature are not yet known). This approach, known as Gene Expression-Based High Throughput Screening (GE-HTS), has been shown to identify candidate therapeutic approaches in AML, Ewing sarcoma, and neuroblastoma, and has identified tool compounds capable of inhibiting PDGF receptor signaling. A related approach, known as the Connectivity Map (www.broad.mit.edu/cmap) attempts to use gene expression profiles as a universal language with which to connect cellular states, gene product function, and drug action. In this manner, a gene expression signature of interest is used to computationally query a database of gene expression profiles of cells systematically treated with a large number of compounds (e.g., all off-patent FDA-approved drugs), thereby identifying potential new applications for existing drugs. Such systems level approaches thus seek chemical modulators of cellular states, even when the molecular basis of such altered states is unknown.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4811-4811
Author(s):  
Joanna S. Yi ◽  
Alex Federation ◽  
Jun Qi ◽  
Sirano Dhe-Paganon ◽  
Michael Hadler ◽  
...  

Abstract Cooperation between several epigenetic modulators defines MLL-rearranged leukemia as an epigenomic-driven cancer. Wild type MLL catalyzes trimethylation of lysine 4 on histone 3 from the methyl donor S-adenosylmethionine (SAM) at homeobox and other genes important for hematopoiesis, promoting their expression during development. However, in MLL-rearrangements, its methyltransferase domain is ubiquitously lost and replaced with >70 known fusion partners. Many of these fusion partners recruit DOT1L, the only known SAM-dependent lysine methyltransferase responsible for the methylation of lysine 79 of histone 3 (H3K79)—a mark associated with most actively transcribed genes. Therefore, the recruitment of DOT1L by MLL fusion partners to MLL-target genes leads to aberrant H3K79 hypermethylation at these loci, resulting in inappropriate gene expression and leukemogenesis. DOT1L as a therapeutic target in MLL has been genetically validated by several groups, leading to the development of SAM-competitive small molecule inhibitors of DOT1L. These inhibitors exhibit excellent biochemical activity and selectivity, yet have delayed cellular activity and needing relatively high doses, with viability effects requiring 7-10 days and EC50s for H3K79 methylation depletion of 1-3 μM in cell lines. In animal studies, this translates to a modest survival benefit while requiring high doses through continuous osmotic subcutaneous infusion. Further optimization of DOT1L inhibitors is therefore needed. To date, development of DOT1L inhibitors has been slow, perhaps related to inadequacy of discovery chemistry assay technologies. All biochemical assays are radioactivity-based and are not miniaturizeable; low-throughput and delayed cellular effects of DOT1L inhibition all hamper the discovery of improved inhibitors. Therefore a pressing need towards improved DOT1L inhibitor discovery is a robust, accessible, and rapid profiling platform. Toward this goal, we synthesized both FITC- and biotin-tagged DOT1L probe ligands. We confirmed by structural studies that binding of the probes were similar to our previously published inhibitor, depleted H3K79 methylation, and had antiproliferative effects in MLL-rearranged cell lines. We then utilized the probes to devise two non-radioactive, orthogonal biochemical assays to competitively profile putative inhibitors: one employing bead-based, proxmity fluorescence technology and the second using fluorescence polarization technology. These assays are robust and adaptable to high-throughput screening. We also designed a miniaturizable high-content imaging, immunofluorescence-based assay to assess the effect of DOT1L inhibitors on H3K79 methylation, reporting cellular IC50s after just four days of treatment. These three assays were validated against three known DOT1L inhibitors of different potencies, accurately differentiating between the compounds. Together, these orthogonal assays define an accessible platform capability to discover and optimize DOT1L inhibitors. Our platform rank-ordered a library of SAM derivatives that we synthesized, indicating that large substituents off the SAM base does not affect DOT1L binding. We also explored other features of the SAM core structure, identifying several chlorinated probes that had increased cellular potency (IC50 values ~10nM) relative to the initial compounds published, without losing specificity for DOT1L. The inhibitory effect on MLL-target gene expression correlated to the H3K79me2 decrease reported in high content assay, validating that our high-content assay accurately reports on downstream biology seen later in treatment. And as expected, the high-content potencies of our chlorinated DOT1L probes also correlated to increased anti-proliferative effect in MLL cells. Overall, we utilized chemistry, biology, and chemical biology tools to develop this profiling platform capability for more rapid discovery and optimization of small molecule DOT1L inhibitors. These assays can additionally be used to screen for non-SAM competitive inhibitors in high-throughput fashion. Furthermore, the DOT1L inhibitors and probes synthesized here (available as open-source tools) are useful in deeper mechanistic studies of the DOT1L complex and its role in MLL. Disclosures Armstrong: Epizyme: Consultancy.


2001 ◽  
Vol 6 (6) ◽  
pp. 421-428
Author(s):  
C. Renee Albano ◽  
Canghai Lu ◽  
William E. Bentley ◽  
Govind Rao

Green fluorescent protein fusions were constructed with several oxidative stress promoters from Escherichia coli. These promoters were chosen for their induction by reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and hydroxyl radicals. When exposed to various free radical insults, the cells fluoresced with great specificity based on the corresponding ROS. In this work, we propose a way in which these constructs could be used to study the mode of action of a variety of antitumor drugs. This approach offers the possibility of complementing gene chip technology by the creation of living chips for high throughput screening as well as studying differential gene expression.


FEBS Open Bio ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 1352-1363 ◽  
Author(s):  
Xiaoning Li ◽  
Sijia Wang ◽  
Yanhua Lu ◽  
Huanhuan Yin ◽  
Junhua Xiao ◽  
...  

2004 ◽  
Vol 36 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Kimberly Stegmaier ◽  
Kenneth N Ross ◽  
Sierra A Colavito ◽  
Shawn O'Malley ◽  
Brent R Stockwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document