scholarly journals Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tong Xu ◽  
Qin Dong ◽  
Yuxiao Luo ◽  
Yanqing Liu ◽  
Liang Gao ◽  
...  

AbstractPorphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, has been shown to accelerate the progression of atherosclerosis (AS). However, the definite mechanisms remain elusive. Emerging evidence supports an association between mitochondrial dysfunction and AS. In our study, the impact of P. gingivalis on mitochondrial dysfunction and the potential mechanism were investigated. The mitochondrial morphology of EA.hy926 cells infected with P. gingivalis was assessed by transmission electron microscopy, mitochondrial staining, and quantitative analysis of the mitochondrial network. Fluorescence staining and flow cytometry analysis were performed to determine mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP) levels. Cellular ATP production was examined by a luminescence assay kit. The expression of key fusion and fission proteins was evaluated by western blot and immunofluorescence. Mdivi-1, a specific Drp1 inhibitor, was used to elucidate the role of Drp1 in mitochondrial dysfunction. Our findings showed that P. gingivalis infection induced mitochondrial fragmentation, increased the mtROS levels, and decreased the MMP and ATP concentration in vascular endothelial cells. We observed upregulation of Drp1 (Ser616) phosphorylation and translocation of Drp1 to mitochondria. Mdivi-1 blocked the mitochondrial fragmentation and dysfunction induced by P. gingivalis. Collectively, these results revealed that P. gingivalis infection promoted mitochondrial fragmentation and dysfunction, which was dependent on Drp1. Mitochondrial dysfunction may represent the mechanism by which P. gingivalis exacerbates atherosclerotic lesions.

2012 ◽  
Vol 302 (1) ◽  
pp. H167-H179 ◽  
Author(s):  
Kyriakos N. Papanicolaou ◽  
Gladys A. Ngoh ◽  
Erinne R. Dabkowski ◽  
Kelly A. O'Connell ◽  
Rogerio F. Ribeiro ◽  
...  

Molecular studies examining the impact of mitochondrial morphology on the mammalian heart have previously focused on dynamin related protein-1 (Drp-1) and mitofusin-2 (Mfn-2), while the role of the other mitofusin isoform, Mfn-1, has remained largely unexplored. In the present study, we report the generation and initial characterization of cardiomyocyte-specific Mfn-1 knockout (Mfn-1 KO) mice. Using electron microscopic analysis, we detect a greater prevalence of small, spherical mitochondria in Mfn-1 KO hearts, indicating that the absence of Mfn-1 causes a profound shift in the mitochondrial fusion/fission balance. Nevertheless, Mfn-1 KO mice exhibit normal left-ventricular function, and isolated Mfn-1 KO heart mitochondria display a normal respiratory repertoire. Mfn-1 KO myocytes are protected from mitochondrial depolarization and exhibit improved viability when challenged with reactive oxygen species (ROS) in the form of hydrogen peroxide (H2O2). Furthermore, in vitro studies detect a blunted response of KO mitochondria to undergo peroxide-induced mitochondrial permeability transition pore opening. These data suggest that Mfn-1 deletion confers protection against ROS-induced mitochondrial dysfunction. Collectively, we suggest that mitochondrial fragmentation in myocytes is not sufficient to induce heart dysfunction or trigger cardiomyocyte death. Additionally, our data suggest that endogenous levels of Mfn-1 can attenuate myocyte viability in the face of an imminent ROS overload, an effect that could be associated with the ability of Mfn-1 to remodel the outer mitochondrial membrane.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1662
Author(s):  
Dongjoon Kim ◽  
Aravind Sankaramoorthy ◽  
Sayon Roy

Diabetic retinopathy is a prevalent microvascular complication characterized by apoptotic vascular cell loss in the retina. Previous studies have shown that high glucose (HG)-induced mitochondrial fragmentation plays a critical role in promoting retinal vascular cell apoptosis. Here, we investigated whether downregulation of mitochondrial fission genes, Fis1 and Drp1, which are overexpressed in HG condition, prevents mitochondrial fragmentation, preserves mitochondrial function, and protects retinal endothelial cells from apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (5 mM glucose) or HG (30 mM glucose) medium; in parallel, cells grown in HG medium were transfected with either Fis1 siRNA or Drp1 siRNA, or both siRNAs in combination, or scrambled siRNA as control. Live-cell confocal imaging showed decreased mitochondrial fission in cells transfected with Fis1 siRNA or Drp1 siRNA concomitant with reduced TUNEL-positive cells and a decrease in the expression of pro-apoptotic proteins, Bax and cleaved caspase 3, under HG condition. Importantly, the combined siRNA approach against Fis1 and Drp1 prevented HG-induced changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The findings from this study indicate that reducing HG-induced overexpression of mitochondrial fission genes preserves mitochondrial morphology and prevents retinal vascular cell apoptosis associated with diabetic retinopathy.


2017 ◽  
Vol 312 (3) ◽  
pp. H515-H527 ◽  
Author(s):  
Michael J. Tanner ◽  
Jingli Wang ◽  
Rong Ying ◽  
Tisha B. Suboc ◽  
Mobin Malik ◽  
...  

Intensive glycemic regulation has resulted in an increased incidence of hypoglycemia. Hypoglycemic burden correlates with adverse cardiovascular complications and contributes acutely and chronically to endothelial dysfunction. Prior data indicate that mitochondrial dysfunction contributes to hypoglycemia-induced endothelial dysfunction, but the mechanisms behind this linkage remain unknown. We attempt to determine whether clinically relevant low-glucose (LG) exposures acutely induce endothelial dysfunction through activation of the mitochondrial fission process. Characterization of mitochondrial morphology was carried out in cultured endothelial cells by using confocal microscopy. Isolated human arterioles were used to explore the effect LG-induced mitochondrial fission has on the formation of detrimental reactive oxygen species (ROS), bioavailability of nitric oxide (NO), and endothelial-dependent vascular relaxation. Fluorescence microscopy was employed to visualize changes in mitochondrial ROS and NO levels and videomicroscopy applied to measure vasodilation response. Pharmacological disruption of the profission protein Drp1 with Mdivi-1 during LG exposure reduced mitochondrial fragmentation among vascular endothelial cells (LG: 0.469; LG+Mdivi-1: 0.276; P = 0.003), prevented formation of vascular ROS (LG: 2.036; LG+Mdivi-1: 1.774; P = 0.005), increased the presence of NO (LG: 1.352; LG+Mdivi-1: 1.502; P = 0.048), and improved vascular dilation response to acetylcholine (LG: 31.6%; LG+Mdivi-1; 78.5% at maximum dose; P < 0.001). Additionally, decreased expression of Drp1 via siRNA knockdown during LG conditions also improved vascular relaxation. Exposure to LG imparts endothelial dysfunction coupled with altered mitochondrial phenotypes among isolated human arterioles. Disruption of Drp1 and subsequent mitochondrial fragmentation events prevents impaired vascular dilation, restores mitochondrial phenotype, and implicates mitochondrial fission as a primary mediator of LG-induced endothelial dysfunction. NEW & NOTEWORTHY Acute low-glucose exposure induces mitochondrial fragmentation in endothelial cells via Drp1 and is associated with impaired endothelial function in human arterioles. Targeting of Drp1 prevents fragmentation, improves vasofunction, and may provide a therapeutic target for improving cardiovascular complications among diabetics. Listen to this article’s corresponding podcast @ http://ajpheart.podbean.com/e/mitochondrial-dynamics-impact-endothelial-function/ .


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Bong Sook Jhun ◽  
Jin O-Uchi ◽  
Stephen Hurst ◽  
Shey-Shing Sheu

Introduction: Regulation of mitochondrial morphology and dynamics is crucial for the maintenance of various cellular functions in cardiac myocytes. Abnormal mitochondrial morphologies concomitant with mitochondrial dysfunction are frequently observed in various pathophysiological states of human heart such as heart failure, where the catecholamine level is elevated. However, it is still unclear what kinds of cardiac signaling pathways regulate mitochondrial morphology and function under pathophysiological conditions. Hypothesis: Adrenergic signaling induces cardiac mitochondrial morphology changes and mitochondrial dysfunction, which simultaneously contribute to cardiac injury. Methods: H9c2 cardiac myoblasts were stimulated by α 1 -adrenoceptor (α 1 -AR) agonist phenylephrine and mitochondrial morphology was monitored by confocal microscopy. Translocation and phosphorylation of a mitochondrial fission protein, dynamin-like protein 1 (DLP1) was observed from whole cell lysates, cytosolic proteins and mitochondrial proteins by western blotting. Results: We found that persistent α 1 -AR stimulation induced mitochondrial fragmentation, followed by an increase in the production of mitochondrial reactive oxygen species (ROS) and the release of cytochrome c from mitochondria to the cytosol in H9c2 cardiac myoblasts. These effects were abolished by the treatment of α 1 -AR antagonist, prazosin. Further, mitochondrial fragmentation by α 1 -AR stimulation was inhibited by expression of the dominant-negative fission mutant DLP1-K38A, suggesting that the mitochondrial fission is required for mitochondrial fragmentation observed in α 1 -AR stimulation. We also found that DLP1 was translocated from cytosol to mitochondria under α 1 -AR stimulation. In addition, activation of protein kinase D1 (PKD1), a protein kinase downstream of α 1 -AR signaling, led to the phosphorylation of DLP1 at serine 637 which lies within a putative PKD phosphorylation consensus motif. Conclusion: α 1 -AR signaling induces mitochondrial fragmentation and cell injury, possibly through PKD1-dependent phosphorylation of DLP1.


2015 ◽  
Vol 309 (10) ◽  
pp. E829-E839 ◽  
Author(s):  
Mei-Chen Lo ◽  
Ming-Hong Chen ◽  
Wen-Sen Lee ◽  
Chin-I Lu ◽  
Chuang-Rung Chang ◽  
...  

Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hanyu Yang ◽  
Lu Wang ◽  
Caixia Zang ◽  
Xu Yang ◽  
Xiuqi Bao ◽  
...  

Mitochondrial dysfunction is involved in the pathogenesis of Parkinson’s disease (PD). Mitochondrial morphology is dynamic and precisely regulated by mitochondrial fission and fusion machinery. Aberrant mitochondrial fragmentation, which can result in cell death, is controlled by the mitochondrial fission protein, dynamin-related protein 1 (Drp1). Our previous results demonstrated that FLZ could correct mitochondrial dysfunction, but the effect of FLZ on mitochondrial dynamics remain uncharacterized. In this study, we investigated the effect of FLZ and the role of Drp1 on 1-methyl-4-phenylpyridinium (MPP+)–induced mitochondrial fission in neurons. We observed that FLZ blocked Drp1, inhibited Drp1 enzyme activity, and reduced excessive mitochondrial fission in cultured neurons. Furthermore, by inhibiting mitochondrial fission and ROS production, FLZ improved mitochondrial integrity and membrane potential, resulting in neuroprotection. FLZ curtailed the reduction of synaptic branches of primary cultured dopaminergic neurons caused by MPP+ exposure, reduced abnormal fission, restored normal mitochondrial distribution in neurons, and exhibited protective effects on dopaminergic neurons. The in vitro research results were validated using an MPTP-induced PD mouse model. The in vivo results revealed that FLZ significantly reduced the mitochondrial translocation of Drp1 in the midbrain of PD mice, which, in turn, reduced the mitochondrial fragmentation in mouse substantia nigra neurons. FLZ also protected dopaminergic neurons in PD mice and increased the dopamine content in the striatum, which improved the motor coordination ability of the mice. These findings elucidate this newly discovered mechanism through which FLZ produces neuroprotection in PD.


Antioxidants ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 195 ◽  
Author(s):  
Bong Jhun ◽  
Jin O-Uchi ◽  
Stephanie Adaniya ◽  
Michael Cypress ◽  
Yisang Yoon

Abnormal mitochondrial morphology, especially fragmented mitochondria, and mitochondrial dysfunction are hallmarks of a variety of human diseases including heart failure (HF). Although emerging evidence suggests a link between mitochondrial fragmentation and cardiac dysfunction, it is still not well described which cardiac signaling pathway regulates mitochondrial morphology and function under pathophysiological conditions such as HF. Mitochondria change their shape and location via the activity of mitochondrial fission and fusion proteins. This mechanism is suggested as an important modulator for mitochondrial and cellular functions including bioenergetics, reactive oxygen species (ROS) generation, spatiotemporal dynamics of Ca2+ signaling, cell growth, and death in the mammalian cell- and tissue-specific manners. Recent reports show that a mitochondrial fission protein, dynamin-like/related protein 1 (DLP1/Drp1), is post-translationally modified via cell signaling pathways, which control its subcellular localization, stability, and activity in cardiomyocytes/heart. In this review, we summarize the possible molecular mechanisms for causing post-translational modifications (PTMs) of DLP1/Drp1 in cardiomyocytes, and further discuss how these PTMs of DLP1/Drp1 mediate abnormal mitochondrial morphology and mitochondrial dysfunction under adrenergic signaling activation that contributes to the development and progression of HF.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Qing-Rui Wu ◽  
Dan-Lin Zheng ◽  
Pei-Ming Liu ◽  
Hui Yang ◽  
Lu-An Li ◽  
...  

AbstractMitochondrial dysfunction and impaired Ca2+ handling are involved in the development of diabetic cardiomyopathy (DCM). Dynamic relative protein 1 (Drp1) regulates mitochondrial fission by changing its level of phosphorylation, and the Orai1 (Ca2+ release-activated calcium channel protein 1) calcium channel is important for the increase in Ca2+ entry into cardiomyocytes. We aimed to explore the mechanism of Drp1 and Orai1 in cardiomyocyte hypertrophy caused by high glucose (HG). We found that Zucker diabetic fat rats induced by administration of a high-fat diet develop cardiac hypertrophy and impaired cardiac function, accompanied by the activation of mitochondrial dynamics and calcium handling pathway-related proteins. Moreover, HG induces cardiomyocyte hypertrophy, accompanied by abnormal mitochondrial morphology and function, and increased Orai1-mediated Ca2+ influx. Mechanistically, the Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1) prevents cardiomyocyte hypertrophy induced by HG by reducing phosphorylation of Drp1 at serine 616 (S616) and increasing phosphorylation at S637. Inhibition of Orai1 with single guide RNA (sgOrai1) or an inhibitor (BTP2) not only suppressed Drp1 activity and calmodulin-binding catalytic subunit A (CnA) and phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) expression but also alleviated mitochondrial dysfunction and cardiomyocyte hypertrophy caused by HG. In addition, the CnA inhibitor cyclosporin A and p-ERK1/2 inhibitor U0126 improved HG-induced cardiomyocyte hypertrophy by promoting and inhibiting phosphorylation of Drp1 at S637 and S616, respectively. In summary, we identified Drp1 as a downstream target of Orai1-mediated Ca2+ entry, via activation by p-ERK1/2-mediated phosphorylation at S616 or CnA-mediated dephosphorylation at S637 in DCM. Thus, the Orai1–Drp1 axis is a novel target for treating DCM.


Sign in / Sign up

Export Citation Format

Share Document