scholarly journals EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma

2019 ◽  
Vol 121 (11) ◽  
pp. 922-933 ◽  
Author(s):  
Shaohui He ◽  
Quan Huang ◽  
Jinbo Hu ◽  
Lei Li ◽  
Yanbin Xiao ◽  
...  

Abstract Background The extracellular matrix has been critically associated with the tumorigenesis and progression of Ewing sarcoma (ES). However, the regulatory and prognostic roles of tenascin-C (TNC) in ES remain unclear. Methods TNC expression was examined in specimens by immunohistochemistry, and the association of TNC expression with ES patient survival was also analysed. TNC-knockout cell lines were constructed using CRISPR/Cas9 methods. In vitro experiments and in vivo bioluminescent imaging using BALB/c nude mice were conducted to evaluate the effect of TNC on ES tumour progression. RNA sequencing was performed, and the underlying mechanism of TNC was further explored. Results TNC was overexpressed in ES tissue and cell lines, and TNC overexpression was associated with poor survival in ES patients. TNC enhanced cell proliferation, migration and angiogenesis in vitro and promoted ES metastasis in vivo. The oncoprotein EWS-FLI1 profoundly increased TNC expression by directly binding to the TNC promoter region. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) upregulation induced by Yes-associated protein (YAP) activation was responsible for TNC-regulated ES tumour progression. Activated integrin α5β1 signalling might be correlated with YAP dephosphorylation and nuclear translocation. Conclusions TNC may promote ES tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation.

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 711 ◽  
Author(s):  
Haneen Amawi ◽  
Noor Hussein ◽  
Sai H. S. Boddu ◽  
Chandrabose Karthikeyan ◽  
Frederick E. Williams ◽  
...  

Thienopyrimidines containing a thiophene ring fused to pyrimidine are reported to have a wide-spectrum of anticancer efficacy in vitro. Here, we report for the first time that thieno[3,2-d]pyrimidine-based compounds, also known as the RP series, have efficacy in prostate cancer cells. The compound RP-010 was efficacious against both PC-3 and DU145 prostate cancer (PC) cells (IC50 < 1 µM). The cytotoxicity of RP-010 was significantly lower in non-PC, CHO, and CRL-1459 cell lines. RP-010 (0.5, 1, 2, and 4 µM) arrested prostate cancer cells in G2 phase of the cell cycle, and induced mitotic catastrophe and apoptosis in both PC cell lines. Mechanistic studies suggested that RP-010 (1 and 2 µM) affected the wingless-type MMTV (Wnt)/β-catenin signaling pathway, in association with β-catenin fragmentation, while also downregulating important proteins in the pathway, including LRP-6, DVL3, and c-Myc. Interestingly, RP-010 (1 and 2 µM) induced nuclear translocation of the negative feedback proteins, Naked 1 and Naked 2, in the Wnt pathway. In addition, RP-010 (0.5, 1, 2 and 4 µM) significantly decreased the migration of PC cells in vitro. Finally, RP-010 did not produce significant toxic effects in zebrafish at concentrations of up to 6 µM. In conclusion, RP-010 may be an efficacious and relatively nontoxic anticancer compound for prostate cancer. Future mechanistic and in vivo efficacy studies are needed to optimize the hit compound RP-010 for lead optimization and clinical use.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Feng Pan ◽  
Jun Zhang ◽  
Benseng Tang ◽  
Li Jing ◽  
Bing Qiu ◽  
...  

Abstract Background Recently, it has been demonstrated that circular RNA (circRNA) contributes to the production and progression in human cancer. However, the specific function and underlying mechanism of circ_0028171 in osteosarcoma (OS) still remain largely unclear and require to be investigated. Methods In our study, we confirmed differentially expressed circRNAs by microarray analysis in normal bone cells vs. OS cell lines. The expression of circ-0028171 in OS was measured by qRT-PCR. Nuclear-cytoplasmic fractionation was employed to identify the localization of circ-0028171, and RNase R and actinomycin D treatment were used to prove its circular characteristic. In vitro experiments, such as CCK-8 method, cell count, cell colony formation, transwell migration and invasion assays, and in vivo tumor models were adopted to evaluate the effect of circ_0028171. Further, luciferase reporter, RIP and RNA pull-down assays were conducted to confirm the binding sites of circ_0028171 with miR-218-5p. Results We found that circ_0028171 displayed a remarkably higher expression in both OS tissues and cell lines. Circ_0028171 mainly located in the cytoplasm as a stable cyclic transcript. Knockdown of circ_0028171 suppressed OS tumor growth in vitro and in vivo, while up-regulated circ_0028171 remarkably enhanced cell proliferation, migration and invasion abilities in OS. Several mechanistic experiments revealed that circ_0028171 served as a sponge of miR-218-5p to increase IKBKB expression. Conclusions our research reveals that circ_0028171 might promote the malignant behavior of OS tissues through miR-218-5p/IKBKB axis, which could be a potential novel marker for early diagnosis of OS.


2019 ◽  
Vol 27 (4) ◽  
pp. 1355-1368 ◽  
Author(s):  
Kefei Yuan ◽  
Kunlin Xie ◽  
Tian Lan ◽  
Lin Xu ◽  
Xiangzheng Chen ◽  
...  

Abstract Metastasis is one of the main contributors to the poor prognosis of hepatocellular carcinoma (HCC). However, the underlying mechanism of HCC metastasis remains largely unknown. Here, we showed that TXNDC12, a thioredoxin-like protein, was upregulated in highly metastatic HCC cell lines as well as in portal vein tumor thrombus and lung metastasis tissues of HCC patients. We found that the enforced expression of TXNDC12 promoted metastasis both in vitro and in vivo. Subsequent mechanistic investigations revealed that TXNDC12 promoted metastasis through upregulation of the ZEB1-mediated epithelial–mesenchymal transition (EMT) process. We subsequently showed that TXNDC12 overexpression stimulated the nuclear translocation and activation of β-catenin, a positive transcriptional regulator of ZEB1. Accordingly, we found that TXNDC12 interacted with β-catenin and that the thioredoxin-like domain of TXNDC12 was essential for the interaction between TXNDC12 and β-catenin as well as for TXNDC12-mediated β-catenin activation. Moreover, high levels of TXNDC12 in clinical HCC tissues correlated with elevated nuclear β-catenin levels and predicted worse overall and disease-free survival. In summary, our study demonstrated that TXNDC12 could activate β-catenin via protein–protein interaction and promote ZEB1-mediated EMT and HCC metastasis.


2021 ◽  
Author(s):  
Feng-Juan Zhou ◽  
Sen Meng ◽  
Hongmei Yong ◽  
Ping-Fu Hou ◽  
Min-Le Li ◽  
...  

Abstract Renal cell carcinoma (RCC) is one of the most prevalent cancers. Long noncoding RNAs (LncRNAs) have been indicated as a mediator acted in tumorigenesis of RCC. However, the mechanism of LINC00460 on RCC is yet to be investigated. This study aimed to investigate the potential function of LINC00460 and underlying mechanism of RCC. We detected LINC00460 expression in RCC tissues and the prognosis in RCC patients using Gene Expression Profiling Interactive Analysis (GEPIA) website and The Cancer Genome Atlas (TCGA) database. LINC00460 level in normal renal cell line and RCC cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). We study the effects of LINC00460 on proliferation, migration, invasion, apoptosis in RCC cells lines using a series of in vivo and in vitro experiments. RNA sequencing (RNA-seq) analysis for the whole transcriptome was applied to searching potential LINC00460 related signal pathway in RCC. We identified the significant up-regulated expression level of LINC00460 in RCC tissues and cell lines. Elevated LINC00460 was correlated with shorter survival of RCC patients. Overexpression of LINC00460 promoted cell viability, proliferation, invasion and migration, while down-regulation of LINC00460 exerted inhibitory effect on these activities. We crucially identified that LNC00460 promotes development of RCC by influencing the PI3K/AKT pathway. Knockdown of LNC00460 decreased the phosphorylation of AKT and mTOR. The key finding of our study provided a new evidence suggesting that LINC00460 functions as an oncogene in RCC pathogenesis by mediating the PI3K/AKT pathway, which may provide a new target for the treatment of RCC.


Cancer ◽  
2002 ◽  
Vol 95 (8) ◽  
pp. 1735-1745 ◽  
Author(s):  
Ryszard Braczkowski ◽  
Andrew V. Schally ◽  
Artur Plonowski ◽  
Jozsef L. Varga ◽  
Kate Groot ◽  
...  

Author(s):  
Peng Sun ◽  
Shun-Zong Song ◽  
Shuang Jiang ◽  
Xia Li ◽  
You-Li Yao ◽  
...  

The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of I&kappa;B-&alpha; and nuclear translocation of nuclear factor (NF)-&kappa;B were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion of interleukin (IL)-1&beta;. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1&beta; in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhen-xing Liang ◽  
Hua-shan Liu ◽  
Li Xiong ◽  
Xin Yang ◽  
Feng-wei Wang ◽  
...  

Abstract Background Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. Methods We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC–MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. Results A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. Conclusions circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.


2018 ◽  
Vol 50 (5) ◽  
pp. 1815-1831 ◽  
Author(s):  
Xianling Zeng ◽  
Yafei Zhang ◽  
Huiqiu Xu ◽  
Taohong Zhang ◽  
Yan Xue ◽  
...  

Background/Aims: Choriocarcinoma (CC) is a highly aggressive gestational trophoblastic neoplasia; however, the underlying molecular mechanisms of its invasiveness and metastasis remain poorly understood. Human secreted frizzled-related protein 2 (SFRP2) could function as a tumor promoter or suppressor in different tumors, yet the role it plays in CC’s invasion and metastasis is thoroughly unclear. The current study was aimed to explore the function and underlying mechanism of SFRP2 in CC. Methods: The expression of SFRP2 in CC tissues was examined via immunohistochemistry. The methylation level and expression of SFRP2 in CC cell lines, JEG-3 and JAR were examined via bisulfite sequencing PCR (BSP), western blotting and quantitative RT-PCR. The biological role of increasing expressed SFRP2 through its promoter demethylation with 5-Aza-2’-deoxycytidine (5-Aza) was examined by a series of in vitro functional studies. Furthermore, lentivirus transfection technology was adopted to investigate the biological roles of SFRP2 knockdown in JEG-3 and JAR cells in vitro and in vivo. Moreover, its downstream signaling pathway was investigated. Results: SFRP2 was downregulated in CC tissues, and its expression was inversely related to its promoter hypermethylation frequency in JEG-3 and JAR cells. Increased SFRP2 through its promoter demethylation inhibited cell migration, invasion and colony formation in JEG-3 and JAR cells, whereas decreased SFRP2 reversed the epithelial-mesenchymal transition (EMT) process and stemness in JEG-3 and JAR cells both in vitro and vivo. Mechanistically, SFRP2 regulated the EMT and stemness of CC cell lines via canonical Wnt/β-catenin signaling, validated by the usage of a Wnt activator and inhibitor. Conclusion: The current study indicates that downregulated SFRP2 has potent tumor-promotive effects in CC through the modulation of cancer stemness and the EMT phenotype via activation of Wnt/β-catenin signaling in vitro and in vivo.


2018 ◽  
Author(s):  
Hasan Siddiqui ◽  
Julia Selich-Anderson ◽  
Joshua Felgenhauer ◽  
James Fitch ◽  
Vijay Nadella ◽  
...  

AbstractThe EWS-FLI1 fusion protein drives oncogenesis in the Ewing sarcoma family of tumors (ESFT) in humans, but its toxicity in normal cells requires additional cellular events for oncogenesis. We show that the lncRNAHOTAIRmaintains cell viability in the presence of EWS-FLI1 and redirects epigenetic regulation in ESFT.HOTAIRis consistently overexpressed in ESFTs and is not driven by EWS-FLI1. Repression ofHOTAIRin ESFT cell lines significantly reduces anchorage-independent colony formation in vitro and impairs tumor xenograft growth in vivo. Overexpression ofHOTAIRin human mesenchymal stem cells (hMSCs), a putative cell of origin of ESFT, and IMR90 cells induces colony formation. Critically, HOTAIR-expressing hMSCs and IMR90 cells remain viable with subsequentEWS-FLI1expression.HOTAIRinduces histone modifications and gene repression through interaction with the epigenetic modifier LSD1 in ESFT cell lines and hTERT-hMSCs. Our findings suggest thatHOTAIRmaintains ESFT viability through epigenetic dysregulation.SignificanceWhile theEWS-FLI1fusion gene was determined to be the oncogenic driver in the overwhelming majority of ESFT, it is toxic to cell physiology and requires one or more additional molecular events to maintain cell viability. As these tumors have surprisingly few genetic mutations at diagnosis, epigenetic changes have been considered to be such an event, but the mechanism by which these changes are driven remains unclear. Our work shows thatHOTAIRis consistently expressed among ESFT and induces epigenetic and gene expression changes that cooperate in tumorigenesis. Furthermore, expression ofHOTAIRallows for cell viability in the setting of subsequentEWS-FLI1expression. Our findings elucidate new steps of malignant transformation in this cancer and identify novel therapeutic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xing Liu ◽  
Pingsheng Zhou ◽  
Keqing He ◽  
Zhili Wen ◽  
Yong Gao

Background: The etiology and carcinogenesis of hepatocellular carcinoma (HCC) are associated with various risk factors. Saponins extracted from Dioscorea zingiberensis C. H. Wright exhibit antitumor activity against HCC. This study aimed to investigate the effect and the underlying mechanism of Dioscorea Zingiberensis new saponin (ZnS) on HCC.Methods: Human HCC cell lines, Huh7 and SMMC-7721, were treated with different concentrations of ZnS. Cell apoptosis was determined via flow cytometry assay. Differentially expressed lncRNAs (DElncRNAs) in ZnS-treated SMMC-7721 cells were determined through RNA-sequence. The role of lncRNA TCONS-00026762 in HCC was investigated gain of function analysis, along with cell proliferation, apoptosis, and invasion in HCC cells. A subcutaneous xenograft of SMMC-7721 cell lines was established to study the effects of TCONS-00026762 in vivo. The expression of apoptosis-related proteins was detected in vivo and in vitro via western blotting.Results: ZnS inhibited the proliferation of HCC cell in a dose-dependent manner. ZnS could induce apoptosis in HCC cells. Illumina sequencing results showed that 493 DElncRNAs were identified in ZnS-treated SMMC-7721 cells. TCONS-00026762 expression was down-regulated in the ZnS-treated SMMC-7721 cells. TCONS-00026762 inhibited the effect of ZnS on the proliferation, apoptosis, and invasion of HCC cells. ZnS inhibited the tumor growth, while, TCONS-00026762 promoted tumor growth in vivo. Furthermore, ZnS and TCONS-00026762 regulated cell apoptotic pathways.Conclusion: ZnS significantly inhibits the viability, apoptosis, invasion, and tumorigenicity of HCC cells by regulating the expression of TCONS-00026,762. Our findings provide novel insights into the potential role of lncRNA in HCC therapy.


Sign in / Sign up

Export Citation Format

Share Document