scholarly journals The novel ZEB1-upregulated protein PRTG induced by Helicobacter pylori infection promotes gastric carcinogenesis through the cGMP/PKG signaling pathway

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Tian Xiang ◽  
Chunhui Yuan ◽  
Xia Guo ◽  
Honghao Wang ◽  
Qinzhen Cai ◽  
...  

AbstractHelicobacter pylori (H. pylori) is listed as a class I carcinogen in human gastric cancer; however, the underlying mechanisms are poorly understood. In this study, we identified Protogenin (PRTG) was upregulated in both gastric cancer tissues and H. pylori-infected tissues by analyzing dysregulated genes in TCGA and GEO databases. Importantly, upregulated PRTG predicted poor prognosis of gastric cancer patients and integrative analysis revealed that PRTG served as an oncogenic protein in gastric cancer and was required for H. pylori-mediated tumorigenic activities in in vitro cellular and in vivo tumor-bearing mouse models. Mechanistically, H. pylori infection enhanced PRTG expression by promoting transcriptional factor ZEB1 stabilization and recruitment to the PRTG promoter, and which then activated the sub-following cGMP/PKG signaling pathway in bioinformatic and cellular studies. Cellular studies further confirmed that PRTG depended on activating cGMP/PKG axis to promote proliferation, metastasis, and chemoresistance of gastric cancer cells. The PKG inhibitor KT5823 played synergistic anti-tumor effects with cisplatin and paclitaxel to gastric cancer cells in in vitro cellular and in vivo tumor-bearing mouse models. Taken together, our findings suggested that H. pylori infection depends on ZEB1 to induce PRTG upregulation, and which leading to the development and progression of gastric cancer through activating cGMP/PKG signaling pathway. Blocking PRTG/cGMP/PKG axis, therefore, presents a promising novel therapeutic strategy for gastric cancer.

2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2021 ◽  
Author(s):  
Li-Jun Tian ◽  
Hong-Zhi Liu ◽  
Qiang Zhang ◽  
Dian-Zhong Geng ◽  
Jing Yang ◽  
...  

Abstract Background: Apelin is a recently identified endogenous ligand associated with proliferation and angiogenesis of several cancers. However, only few studies have reported on the functions and the role of apelin in gastric cancer (GC). Therefore, in the present study, we investigated the association and the mechanisms underlying Apelin expression and proliferation of GC cells both in vitro and in vivo.Methods: We enrolled 178 postoperative care GC patients to investigate clinicopathological and immunohistochemical factors associated with Apelin expression. The relationship between Survival of patients and apelin expression was evaluated using Kaplan-Meier method and Cox regression analyses. The expression of apelin mRNA and its proteins in GC tissues and cell lines were analyzed using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), western blot and ELISA. The role and mechanisms underlying regulation of Apelin expression in human GC cells were evaluated through several in vitro and in vivo experiments. Results: Apelin was over expressed in human GC cells, relative to adjacent normal tissues. The over expression of apelin was associated with vessel invasion (P <0.01), lymph node metastasis (P <0.01), late-staged tumor (T) (P <0.05), worse pathological type (P <0.05), nerve invasion (P <0.05). In addition, expression of apelin strongly and positively correlated with that of vascular endothelial growth factor (VEGF). Over-expression of apelin promoted proliferation and invasion of MGC-803 cell via the ERK/Cyclin D1/MMP-9 signaling pathway. Apelin over-expression also promoted angiogenesis of GC cells, accelerating growth of subcutaneous xenograft of the cancer cells in vivo.Conclusions: Over-expression of apelin promotes proliferation and metastasis of GC cells via the ERK/Cyclin D1/MMP-9 signaling pathway and is associated with adverse events of the cancer. Consequently, apelin is a potential therapeutic target for human GC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xudong Shen ◽  
Kui Zhao ◽  
Liming Xu ◽  
Guilian Cheng ◽  
Jianhong Zhu ◽  
...  

BackgroundGastric cancer (GC) is one of the most common malignancies in the world, and the fourth most frequent malignancy worldwide. YTHDF2 (YTH domain family 2, YTHDF2) binds to mRNA containing m6A, thereby regulating the localization and stability of the bound mRNA. YTHDF2 was shown to be associated with some cancer patient prognosis. However, the effect of YTHDF2 on gastric cancer and the molecular mechanism of this effect have not been documented.MethodsTo conduct this research, YTHDF2 expression levels in public databases and gastric cancer patient samples were analyzed. The effects of YTHDF2 on the growth of gastric cancer cells were detected in vivo and in vitro. RNA-seq was used to analyze the signal pathways regulated by YTHDF2, and experiments were carried out for verification.ResultsIn our study, we found that YTHDF2 has lower expression in GC tissues and GC cells, and inhibits the growth of GC cells. In addition, the analysis of clinical data found that the expression level of YTHDF2 is closely related to the stage of GC and the survival of patients with GC. RNA sequencing results showed that overexpression of YTHDF2 significantly reduced protein expression in the FOXC2 (Forkhead box protein C2, FOXC2) signaling pathway. Finally, we found that knockout of FOXC2 reversed the inhibitory effect of YTHDF2 on GC cells.ConclusionIn summary, YTHDF2 inhibits the growth of GC cells by negatively regulating FOXC2 and may serve as a prognostic marker in GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huan Wang ◽  
Nian-Shuang Li ◽  
Cong He ◽  
Chuan Xie ◽  
Yin Zhu ◽  
...  

Previous studies have shown that abnormal methylation is an early key event in the pathogenesis of most human cancers, contributing to the development of tumors. However, little attention has been given to the potential of DNA methylation patterns as markers for Helicobacter pylori- (H. pylori-) associated gastric cancer (GC). In this study, an integrated analysis of DNA methylation and gene expression was conducted to identify some potential key epigenetic markers in H. pylori-associated GC. DNA methylation data of 28 H. pylori-positive and 168 H. pylori-negative GC samples were compared and analyzed. We also analyzed the gene expression data of 18 H. pylori-positive and 145 H. pylori-negative GC cases. Finally, the results were verified by in vitro and in vivo experiments. A total of 5609 differentially methylated regions associated with 2454 differentially methylated genes were identified. A total of 228 differentially expressed genes were identified from the gene expression data of H. pylori-positive and H. pylori-negative GC cases. The screened genes were analyzed for functional enrichment. Subsequently, we obtained 28 genes regulated by methylation through a Venn diagram, and we identified five genes (GSTO2, HUS1, INTS1, TMEM184A, and TMEM190) downregulated by hypermethylation. HUS1, GSTO2, and TMEM190 were expressed at lower levels in GC than in adjacent samples ( P < 0.05 ). Moreover, H. pylori infection decreased HUS1, GSTO2, and TMEM190 expression in vitro and in vivo. Our study identified HUS1, GSTO2, and TMEM190 as novel methylation markers for H. pylori-associated GC.


Gut ◽  
2017 ◽  
Vol 67 (10) ◽  
pp. 1793-1804 ◽  
Author(s):  
Jennifer M Noto ◽  
Abha Chopra ◽  
John T Loh ◽  
Judith Romero-Gallo ◽  
M Blanca Piazuelo ◽  
...  

ObjectiveHelicobacter pylori is the strongest risk factor for gastric cancer; however, the majority of infected individuals do not develop disease. Pathological outcomes are mediated by complex interactions among bacterial, host and environmental constituents, and two dietary factors linked with gastric cancer risk are iron deficiency and high salt. We hypothesised that prolonged adaptation of H. pylori to in vivo carcinogenic microenvironments results in genetic modification important for disease.DesignWhole genome sequencing of genetically related H. pylori strains that differ in virulence and targeted H. pylori sequencing following prolonged exposure of bacteria to in vitro carcinogenic conditions were performed.ResultsA total of 180 unique single nucleotide polymorphisms (SNPs) were identified among the collective genomes when compared with a reference H. pylori genome. Importantly, common SNPs were identified in isolates harvested from iron-depleted and high salt carcinogenic microenvironments, including an SNP within fur (FurR88H). To investigate the direct role of low iron and/or high salt, H. pylori was continuously cultured in vitro under low iron or high salt conditions to assess fur genetic variation. Exposure to low iron or high salt selected for the FurR88H variant after only 5 days. To extend these results, fur was sequenced in 339 clinical H. pylori strains. Among the isolates examined, 17% (40/232) of strains isolated from patients with premalignant lesions harboured the FurR88H variant, compared with only 6% (6/107) of strains from patients with non-atrophic gastritis alone (p=0.0034).ConclusionThese results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis.


2007 ◽  
Vol 2 (10) ◽  
pp. 1934578X0700201
Author(s):  
Maria Teresa Laux ◽  
Manuel Aregullin ◽  
Eloy Rodriguez

A unique group of bioactive, naturally occurring lipid aldehydes were isolated from the fruits of Viburnum opulus, (family Adoxaceae). The natural occurrences of these fatty acid derived aldehydes are reported here for the first time. Helicobacter pylori is a prevalent gastroduodenal pathogen, a causal agent of chronic gastritis and peptic ulcers and an important co-factor in gastric cancer development. We investigated the chemistry and bioactivity of these active constituents by evaluating their ability to inhibit the growth of H. pylori and to induce apoptosis in a gastric cancer cell line (CRL-5971) in vitro.


2020 ◽  
Author(s):  
Xiang Miao ◽  
Yixiang Liu ◽  
Yuzhu Fan ◽  
Guoqiang Wang ◽  
Hongbo zhu

Abstract Background Chemotherapy-based comprehensive treatment is the most important therapeutic method for patients with advanced gastric cancer, but chemoresistance often causes treatment failure. Long non-coding RNA (LncRNA) BRAF-activated non-coding RNA (BANCR) has been shown to participate in many biological behaviors of multiple cancers. However, the biological roles of LncRNA BANCR in chemoresistance of gastric cancer remain unclear. Here, we aimed to evaluate the functions of LncRNA BANCR in the therapy of gastric cancer. Methods In this study, LncRNA BANCR expression was detected in GC patient samples and cell lines by quantity polymerase chain reaction (qPCR). Cell proliferation and viability in cisplatin treated cells were measured using clonogenic survival assay and cell counting kit-8. The levels of ERK1/2 pathway molecules were tested with western blot. Ly3214996, an inhibitor of ERK signal pathway, administration was used to assess the effects of BANCR overexpression on GC cell cisplatin-treated resistance. Moreover, the role of BANCR in cisplatin resistance of GC was certified in xenograft mouse models in vivo. Results our study showed that LncRNA BANCR expression was also significantly increased in GC tissues compared with adjacent normal tissues. Furthermore, we found that BANCR overexpression promoted, while BANCR inhibited, GC cell resistance to cisplatin in vitro. Ly3214996 treatment abolished the BANCR overexpression-mediated GC cell cisplatin resistance via regulating the phosphorylation of ERK protein. Knock-down of BANCR delayed significantly tumor growth in xenograft mouse models. Conclusion BANCR promoted cisplatin resistance of GC cells by activating ERK1/2 pathway. Inhibition of BANCR was markedly suppressed the growth of gastric cancer cells in vitro as well as in vivo. This result provided a new strategy for gastric cancer via targeting BANCR


2011 ◽  
Vol 80 (2) ◽  
pp. 594-601 ◽  
Author(s):  
Francisco Avilés-Jiménez ◽  
Adriana Reyes-Leon ◽  
Erik Nieto-Patlán ◽  
Lori M. Hansen ◽  
Juan Burgueño ◽  
...  

ABSTRACTThe best-studiedHelicobacter pylorivirulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is thecagpathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure thein vivoexpression of genes on thecagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC.In vivoexpression ofH. pylorivirulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, sincein vitroexpression ofcagAwas not greater inH. pyloristrains from patients with GC than in those from patients with NAG or DU, increased expression in GCin vivois likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable toH. pyloricolonization than the acidic environment in patients with NAG or DU.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs. In this study, we investigated the role of miR-875 in GC. Methods: The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models. Related proteins were detected by Western blot. Results: The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors. Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5p can inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway. In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2020 ◽  
Author(s):  
Yaojun Yu ◽  
jing zhang ◽  
Leyi Ni ◽  
Yuesheng Zhu ◽  
Hejie Yu ◽  
...  

Abstract Background: The role of neoantigens in cancer immunotherapy is crucial. However, the effectiveness and safety of personalized neoantigen vaccines in colorectal cancer (CRC), especially in Chinese population, has not been well studied. This paper mainly explores the feasibility and effectiveness of personalized neoantigen vaccines in CRC treatment. Methods: Whole-exome sequencing and transcriptome sequencing were used to identify somatic mutations, RNA expression and human leukocyte antigen (HLA) alleles. Neoantigens were predicted, and the immunogenicity of neoantigen candidates was evaluated by ELISPOT in vitro. To verify the immunogenicity in vivo, neoantigen candidates from HLA-A0201+PW11 were used to immunized female 6-8-week-old HLA-A2.1/Kb-transgenic (Tg) mice. Neoantigen-reactive T cells (NRTs) were induced by immunogenic peptides from autologous HLA-A2.1/Kb to adoptive transfer transgenic mice, and C57BL/6nu/nu mice were used for in vivo antitumor response assays.Results: Compared to medium alone (no peptide) or the unrelated peptide VSV-NP43-69, the neoantigens TSHZ3-L523P, RARA-R83H, TP53-R248W, EYA2-V333I and NRAS-G12D from Patient 4 (PW4); HAVCR2-F39V, SEC11A-R11L, TASP1-P161L, RAP1GAP-S215R, MOSPD1-V63I and NAV2-D1973N from Patient 10 (PW10); and SMPDL3B-T452M, LRFN3-R118Q and ULK1-S248L from Patient 11 (PW11) induced notable peptide-specific T cell responses. The results indicated that about half of the predicted neoantigens for all 3 patients can stimulate T cell responses and antitumor effects in CRC. In addition, predicted neoantigens from PW11 (HLA-A0201) showed promising antitumor efficacy in HLA-A2.1/Kb-Tg mice and tumor-bearing mouse models.Conclusion: With the application of next-generation sequencing (NGS) sequencing of patient specimens, neoantigen prediction and a rapid immunoassay system, an evaluation system utilizing in vitro studies and in vivo transgenic and tumor-bearing mouse models can be used to screen strong immunogenic neoantigens in CRC patients. Accurate identification of neoantigens with strong immunogenicity would promote personalized cancer vaccine development.


Sign in / Sign up

Export Citation Format

Share Document