scholarly journals Linc01133 contributes to gastric cancer growth by enhancing YES1-dependent YAP1 nuclear translocation via sponging miR-145-5p

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujing Sun ◽  
Yuan Tian ◽  
Junyi He ◽  
Yaru Tian ◽  
Guohao Zhang ◽  
...  

AbstractThe long intergenic non-coding RNA linc01133 is reported to be oncogenic in various malignancies. However, the role and mechanism of linc01133 in regulating gastric cancer growth is still not clear. In the present study, we found that linc01133 was significantly upregulated in gastric cancer tissues compared to non-tumorous gastric tissues. Linc01133 over-expression significantly correlated with tumor size and tumor differentiation in gastric cancer patients. The expression of linc01133 was regulated by c-Jun and c-Fos collaboratively. In both in vitro and in vivo studies, linc01133 was shown to promote gastric cancer cell growth. Linc01133 localized in the cytoplasm and functioned as an endogenous competing RNA of miR-145-5p to upregulate the expression of YES1, which was proved to be the target gene of miR-145-5p. By promoting YES1-dependent YAP1 nuclear translocation, linc01133 upregulated the expression of the key cell cycle regulators CDK4, CDK6 and cyclin D1 to promote G1-S phase transition. Thus, our study unveiled the function and mechanism of linc01133 regulating cell cycle progression in gastric cancer.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jun Wang ◽  
Zhigang He ◽  
Bo Sun ◽  
Wenhai Huang ◽  
Jianbin Xiang ◽  
...  

Pleckstrin-2 (PLEK2) is a crucial mediator of cytoskeletal reorganization. However, the potential roles of PLEK2 in gastric cancer are still unknown. PLEK2 expression in gastric cancer was examined by western blotting and real-time PCR. Survival analysis was utilized to test the clinical impacts of the levels of PLEK2 in gastric cancer patients. In vitro and in vivo studies were used to estimate the potential roles played by PLEK2 in modulating gastric cancer proliferation, self-renewal, and tumourigenicity. Bioinformatics approaches were used to monitor the effect of PLEK2 on epithelial-mesenchymal transition (EMT) signalling pathways. PLEK2 expression was significantly upregulated in gastric cancer as compared with nontumour samples. Kaplan-Meier plotter analysis revealed that gastric cancer patients with higher PLEK2 levels had substantially poorer overall survival compared with gastric cancer patients with lower PLEK2 levels. The upregulation or downregulation of PLEK2 in gastric cancer cell lines effectively enhanced or inhibited cell proliferation and proinvasive behaviour, respectively. Additionally, we also found that PLEK2 enhanced EMT through downregulating E-cadherin expression and upregulating Vimentin expression. Our findings demonstrated that PLEK2 plays a potential role in gastric cancer and may be a novel therapeutic target for gastric cancer.


2020 ◽  
Author(s):  
Yeting Hong ◽  
Wei He ◽  
Jianbin Zhang ◽  
Lu Shen ◽  
Chong Yu ◽  
...  

Abstract Background: Cyclin D3-CDK6 complex is a component of the core cell cycle machinery that regulates cell proliferation. By using Human Protein Atlas database, a higher expression level of this complex was found in gastric cancer. However, the function of this complex in gastric cancer remain poorly understood. This study aims to determine the expression pattern of this complex in gastric cancer and to investigate its biological role during tumorigenesis.Methods: To demonstrate that Cyclin D3-CDK6 regulate the c-Myc/miR-15a/16 axis in a feedback loop in gastric cancer, a series of methods were conducted both in vitro and in vivo experiments, including qRT-PCR, western blot analysis, EdU assay, flow cytometry, luciferase reporter assay and immunohistochemical staining. SPSS and Graphpad prism software were used for data analysis.Results: In this study, we found that Cyclin D3 and CDK6 were significantly upregulated in gastric cancer and correlated with poorer overall survival. Further study proved that this complex significantly promoted cell proliferation and cell cycle progression in vitro and accelerated xenografted tumor growth in vivo. Furthermore, we explored the molecular mechanisms through which the complex mediated Rb phosphorylation and then promoted c-Myc expression in vitro, we also found c-Myc could suppress miR-15a/16 expression in gastric cancer cell. Finally, we found that miR-15a/16 can simultaneously regulate Cyclin D3 and CDK6 expression as direct target genes.Conclusions: Our findings uncover the Cyclin D3-CDK6/c-Myc/miR-15a/16 feedback loop axis as a pivotal role in the regulation of gastric cancer tumorigenesis, and this regulating axis may provide a potential therapeutic target for gastric cancer treatment.


2006 ◽  
Vol 24 (11) ◽  
pp. 1770-1783 ◽  
Author(s):  
Geoffrey I. Shapiro

Cyclin-dependent kinases (cdks) are critical regulators of cell cycle progression and RNA transcription. A variety of genetic and epigenetic events cause universal overactivity of the cell cycle cdks in human cancer, and their inhibition can lead to both cell cycle arrest and apoptosis. However, built-in redundancy may limit the effects of highly selective cdk inhibition. Cdk4/6 inhibition has been shown to induce potent G1 arrest in vitro and tumor regression in vivo; cdk2/1 inhibition has the most potent effects during the S and G2 phases and induces E2F transcription factor–dependent cell death. Modulation of cdk2 and cdk1 activities also affects survival checkpoint responses after exposure to DNA-damaging and microtubule-stabilizing agents. The transcriptional cdks phosphorylate the carboxy-terminal domain of RNA polymerase II, facilitating efficient transcriptional initiation and elongation. Inhibition of these cdks primarily affects the accumulation of transcripts with short half-lives, including those encoding antiapoptosis family members, cell cycle regulators, as well as p53 and nuclear factor-kappa B–responsive gene targets. These effects may account for apoptosis induced by cdk9 inhibitors, especially in malignant hematopoietic cells, and may also potentiate cytotoxicity mediated by disruption of a variety of pathways in many transformed cell types. Current work is focusing on overcoming pharmacokinetic barriers that hindered development of flavopiridol, a pan-cdk inhibitor, as well as assessing novel classes of compounds potently targeting groups of cell cycle cdks (cdk4/6 or cdk2/1) with variable effects on the transcriptional cdks 7 and 9. These efforts will establish whether the strategy of cdk inhibition is able to produce therapeutic benefit in the majority of human tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuyu Jiang ◽  
Jinyuan Zhang ◽  
Fang Li ◽  
Xiaoping Ma ◽  
Fei Wu ◽  
...  

RNA polymerase II subunit A (POLR2A) is the largest subunit encoding RNA polymerase II and closely related to cancer progression. However, the biological role and underlying molecular mechanism of POLR2A in gastric cancer (GC) are still unclear. Our study demonstrated that POLR2A was highly expressed in GC tissue and promoted the proliferation of GC in vitro and in vivo. We also found that POLR2A participated in the transcriptional regulation of cyclins and cyclin-dependent kinases (CDKs) at each stage and promoted their expression, indicated POLR2A’s overall promotion of cell cycle progression. Moreover, POLR2A inhibited GC cell apoptosis and promoted GC cell migration. Our results indicate that POLR2A play an oncogene role in GC, which may be an important factor involved in the occurrence and development of GC.


Author(s):  
Erhu Zhao ◽  
Liying Feng ◽  
Longchang Bai ◽  
Hongjuan Cui

Abstract Background Nuclear casein kinase and cyclin-dependent kinase substrate (NUCKS), a novel gene first reported in 2001, is a member of the high mobility group (HMG) family. Although very little is known regarding the biological roles of NUCKS, emerging clinical evidence suggests that the NUCKS protein can be used as a biomarker and therapeutic target in various human ailments, including several types of cancer. Methods We first assessed the potential correlation between NUCKS expression and gastric cancer prognosis. Then functional experiments were conducted to evaluate the effects of NUCKS in cell proliferation, cell cycle, apoptosis and autophagy. Finally, the roles of NUCKS on gastric cancer were examined in vivo. Results We found that NUCKS was overexpressed in gastric cancer patients with poor prognosis. Through manipulating NUCKS expression, it was observed to be positively associated with cell proliferation in vitro and in vivo. NUCKS knockdown could induce cell cycle arrest and apoptosis. Then further investigation indicated that NUCKS knockdown could also significantly induce a marked increase in autophagy though the mTOR-Beclin1 pathway, which could be was rescued by NUCKS restoration. Moreover, silencing Beclin1 in NUCKS knockdown cells or adding rapamycin in NUCKS-overexpressed cells also confirmed these results. Conclusions Our findings revealed that NUCKS functions as an oncogene and an inhibitor of autophagy in gastric cancer. Thus, the downregulation or inhibition of NUCKS may be a potential therapeutic strategy for gastric cancer.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 769-769 ◽  
Author(s):  
James J. Hsieh ◽  
Shugaku Takeda ◽  
David Y. Chen ◽  
Todd D. Westergard ◽  
Jill K. Fisher ◽  
...  

Abstract Taspase1 was identified as the threonine endopeptidase that cleaves MLL for proper Hox gene expression in vitro. To investigate its functions in vivo, we generated Taspase1−/− mice. Taspase1 deficiency results in non−cleavage (nc) of MLL and MLL2 and homeotic transformations. Remarkably, our in vivo studies uncover an unexpected role of Taspase1 in cell cycle. Taspase1−/− animals are smaller in size. Taspase1−/− MEFs exhibit impaired proliferation and acute deletion of Taspase1 leads to a marked reduction of thymocytes. Taspase1 deficiency incurs down−regulation of Cyclin Es, As, and Bs and up−regulation of p16Ink4a. We show that MLL and MLL2 directly target E2Fs for Cyclin expression. The un−cleaved precursor MLL displays a reduced histone H3 methyl transferase activity in vitro. Accordingly, CHIP assays demonstrate a markedly decreased histone H3 K4 tri−methylation at Cyclin E1 and E2 genes in Taspase1−/− cells. Furthermore, MLLnc/nc;2nc/nc MEFs are also impaired in proliferation. Our data are consistent with a model in which precursor MLLs, activated by Taspase1, target to Cyclins through E2Fs to methylate histone H3 at K4, leading to activation. Lastly, Taspase1−/− cells are resistant to oncogenic transformation and Taspase1 is over−expressed in many cancer cell lines. Thus, Taspase1 may serve as a target for cancer therapeutics.


2018 ◽  
Vol 2 (S1) ◽  
pp. 13-14
Author(s):  
Emily Vonderhaar ◽  
Michael Dwinell ◽  
Ishan R. Roy ◽  
Donna M. McAllister ◽  
Michael B. Dwinell

OBJECTIVES/SPECIFIC AIMS: We hypothesized that CXCL12, as a biased dimer variant or secreted at dimer-dominant concentrations, would influence PDAC growth and progression. METHODS/STUDY POPULATION: PDAC cells were genetically manipulated to express dimer-promoting levels of CXCL12. These cells were studied in vitro or orthotopically implanted into the mouse pancreas for in vivo studies. As a second approach, recombinant wild-type or engineered CXCL12 monomer or dimer proteins were applied to cells in culture or administered intra-peritoneal to study the effects on tumor growth. RESULTS/ANTICIPATED RESULTS: Mice engrafted with CXCL12-expressing cells had a better survival rate, delayed tumor growth and smaller tumors. Tumors from these mice had significantly less proliferation, measured by Ki-67 staining. In vitro analysis of CXCL12-expressing cells showed decreased viability and growth rates. Percent of cells in the cell cycle G2 phase was also decreased, suggesting cell cycle progression blockade. Viability of human PDAC cells dose-dependently declined upon wild-type CXCL12 treatment, with the non-motile dimer-dominant dose (1000 nM) exhibiting maximal effect. Treatment in an allogeneic mouse model of PDAC with locked-dimer CXCL12, but not wild-type, reduced tumor burden. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results support the notion that biased CXCL12 signaling may be therapeutically exploited to limit pancreatic cancer progression.


2001 ◽  
Vol 21 (11) ◽  
pp. 3692-3703 ◽  
Author(s):  
Claus Storgaard Sørensen ◽  
Claudia Lukas ◽  
Edgar R. Kramer ◽  
Jan-Michael Peters ◽  
Jiri Bartek ◽  
...  

ABSTRACT Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G1/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, the issue of which cyclin-CDK complexes are involved has been a matter of debate, and the mechanism of how cyclin-CDKs interact with APC subunits remains unresolved. Here we substantiate the evidence that mammalian cyclin A-Cdk2 prevents unscheduled APC reactivation during S phase by demonstrating its periodic interaction with Cdh1 at the level of endogenous proteins. Moreover, we identified a conserved cyclin-binding motif within the Cdh1 WD-40 domain and show that its disruption abolished the Cdh1–cyclin A-Cdk2 interaction, eliminated Cdh1-associated histone H1 kinase activity, and impaired Cdh1 phosphorylation by cyclin A-Cdk2 in vitro and in vivo. Overexpression of cyclin binding-deficient Cdh1 stabilized the APC-Cdh1 interaction and induced prolonged cell cycle arrest at the G1/S transition. Conversely, cyclin binding-deficient Cdh1 lost its capability to support APC-dependent proteolysis of cyclin A but not that of other APC substrates such as cyclin B and securin Pds1. Collectively, these data provide a mechanistic explanation for the mutual functional interplay between cyclin A-Cdk2 and APC-Cdh1 and the first evidence that Cdh1 may activate the APC by binding specific substrates.


Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 786-794
Author(s):  
Weiyun Chai ◽  
Lu Chen ◽  
Xiao-Yuan Lian ◽  
Zhizhen Zhang

AbstractTripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.


Sign in / Sign up

Export Citation Format

Share Document