scholarly journals Biology and pathology of the uterine microenvironment and its natural killer cells

Author(s):  
Fuyan Wang ◽  
Anita Ellen Qualls ◽  
Laia Marques-Fernandez ◽  
Francesco Colucci

AbstractTissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 269 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Fayek Ahmad ◽  
Afsar Raza Naqvi

Long noncoding RNA (lncRNA) are a class of endogenous, non-protein coding RNAs that are increasingly being associated with various cellular functions and diseases. Yet, despite their ubiquity and abundance, only a minute fraction of these molecules has an assigned function. LncRNAs show tissue-, cell-, and developmental stage-specific expression, and are differentially expressed under physiological or pathological conditions. The role of lncRNAs in the lineage commitment of immune cells and shaping immune responses is becoming evident. Myeloid cells and lymphoid cells are two major classes of immune systems that work in concert to initiate and amplify innate and adaptive immunity in vertebrates. In this review, we provide mechanistic roles of lncRNA through which these noncoding RNAs can directly participate in the differentiation, polarization, and activation of myeloid (monocyte, macrophage, and dendritic cells) and lymphoid cells (T cells, B cells, and NK cells). While our knowledge on the role of lncRNA in immune cell differentiation and function has improved in the past decade, further studies are required to unravel the biological role of lncRNAs and identify novel mechanisms of lncRNA functions in immune cells. Harnessing the regulatory potential of lncRNAs can provide novel diagnostic and therapeutic targets in treating immune cell related diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oisín Huhn ◽  
Xiaohui Zhao ◽  
Laura Esposito ◽  
Ashley Moffett ◽  
Francesco Colucci ◽  
...  

Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.


2016 ◽  
Vol 213 (11) ◽  
pp. 2229-2248 ◽  
Author(s):  
Elia D. Tait Wojno ◽  
David Artis

Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role.


Author(s):  
Evgeniya V. Shmeleva ◽  
Francesco Colucci

AbstractMany maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna Helmin-Basa ◽  
Lidia Gackowska ◽  
Sara Balcerowska ◽  
Marcelina Ornawka ◽  
Natalia Naruszewicz ◽  
...  

AbstractInnate immune cells such as natural killer (NK) cells, macrophages and dendritic cells (DCs) are involved in the surveillance and clearance of tumor. Intensive research has exposed the mechanisms of recognition and elimination of tumor cells by these immune cells as well as how cancers evade immune response. Hence, harnessing the immune cells has proven to be an effective therapy in treating a variety of cancers. Strategies aimed to harness and augment effector function of these cells for cancer therapy have been the subject of intense researches over the decades. Different immunotherapeutic possibilities are currently being investigated for anti-tumor activity. Pharmacological agents known to influence immune cell migration and function include therapeutic antibodies, modified antibody molecules, toll-like receptor agonists, nucleic acids, chemokine inhibitors, fusion proteins, immunomodulatory drugs, vaccines, adoptive cell transfer and oncolytic virus–based therapy. In this review, we will focus on the preclinical and clinical applications of NK cell, macrophage and DC immunotherapy in cancer treatment.


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Rose Nabatanzi ◽  
Stephen Cose ◽  
Moses Joloba ◽  
Sarah Rowland Jones ◽  
Damalie Nakanjako

2020 ◽  
Vol 21 (18) ◽  
pp. 6604 ◽  
Author(s):  
Yuki Sato ◽  
Eisaku Ogawa ◽  
Ryuhei Okuyama

Psoriasis is a chronic inflammatory skin condition caused by a combination of hereditary and environmental factors. Its development is closely related to the adaptive immune response. T helper 17 cells are major IL-17-producing cells, a function that plays an important role in the pathogenesis of psoriasis. However, recent findings have demonstrated that innate immune cells also contribute to the development of psoriasis. Innate lymphoid cells, γδ T cells, natural killer T cells, and natural killer cells are activated in psoriasis, contributing to disease pathology through IL-17-dependent and -independent mechanisms. The present review provides an overview of recent findings, demonstrating a role for innate immunity in psoriasis.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Luca Parisi ◽  
Barbara Bassani ◽  
Marco Tremolati ◽  
Elisabetta Gini ◽  
Giampietro Farronato ◽  
...  

Inflammation, altered immune cell phenotype, and functions are key features shared by diverse chronic diseases, including cardiovascular, neurodegenerative diseases, diabetes, metabolic syndrome, and cancer. Natural killer cells are innate lymphoid cells primarily involved in the immune system response tonon-self-components but their plasticity is largely influenced by the pathological microenvironment. Altered NK phenotype and function have been reported in several pathological conditions, basically related to impaired or enhanced toxicity. Here we reviewed and discussed the role of NKs in selected, different, and “distant” chronic diseases, cancer, diabetes, periodontitis, and atherosclerosis, placing NK cells as crucial orchestrator of these pathologic conditions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sina Fuchs ◽  
Andrea Scheffschick ◽  
Iva Gunnarsson ◽  
Hanna Brauner

Anti-neutrophil cytoplasmic antibody (ANCA)- associated vasculitis (AAV) is a group of systemic autoimmune diseases characterized by inflammation of small- and medium-sized vessels. The three main types of AAV are granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA). A growing number of studies focus on natural killer (NK) cells in AAV. NK cells are innate lymphoid cells with important roles in anti-viral and anti-tumor defense, but their roles in the pathogenesis of autoimmunity is less well established. In this review, we will present a summary of what is known about the number, phenotype and function of NK cells in patients with AAV. We review the literature on NK cells in the circulation of AAV patients, studies on tissue resident NK cells and how the treatment affects NK cells.


2020 ◽  
Vol 5 (46) ◽  
pp. eaav1080 ◽  
Author(s):  
David Bauché ◽  
Barbara Joyce-Shaikh ◽  
Julie Fong ◽  
Alejandro V. Villarino ◽  
Karin S. Ku ◽  
...  

Signal transducer and activator of transcription (STAT) proteins have critical roles in the development and function of immune cells. STAT signaling is often dysregulated in patients with inflammatory bowel disease (IBD), suggesting the importance of STAT regulation during the disease process. Moreover, genetic alterations in STAT3 and STAT5 (e.g., deletions, mutations, and single-nucleotide polymorphisms) are associated with an increased risk for IBD. In this study, we elucidated the precise roles of STAT5 signaling in group 3 innate lymphoid cells (ILC3s), a key subset of immune cells involved in the maintenance of gut barrier integrity. We show that mice lacking either STAT5a or STAT5b are more susceptible to Citrobacter rodentium–mediated colitis and that interleukin-2 (IL-2)– and IL-23–induced STAT5 drives IL-22 production in both mouse and human colonic lamina propria ILC3s. Mechanistically, IL-23 induces a STAT3-STAT5 complex that binds IL-22 promoter DNA elements in ILC3s. Our data suggest that STAT5a/b signaling in ILC3s maintains gut epithelial integrity during pathogen-induced intestinal disease.


Sign in / Sign up

Export Citation Format

Share Document