scholarly journals Gene characterization and molecular pathway analysis of reverse thermosensitive genic male sterility in eggplant (Solanum melongena L.)

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Bing Li ◽  
Xueping Chen ◽  
Yanrong Wu ◽  
Aixia Gu ◽  
Jingjing Zhang ◽  
...  

Abstract The naturally occurring mutant eggplant line 05ms was identified with reverse thermosensitive genic male sterility (rTGMS), but its temperature-responsive fertility mechanisms remain largely unknown. Here, we studied the flower morphology, anther cellular structure, and genome-wide gene expression of this rTGMS line. Candidate genes for thermosensitive male sterility during the microspore development of 05ms and the temperature-insensitive line S63 under low-temperature (LT) and high-temperature (HT) conditions were identified. Under LT, tapetum cells were vacuolated and had delayed disintegration in 05ms. RNA-seq analysis indicated that DEGs were enriched in the KEGG pathways ‘plant hormone signal transduction’, ‘starch and sucrose metabolism’, and ‘phenylpropanoid biosynthesis’. We identified two genes, 4CLL1 (Sme2.5_00368.1_g00010.1) and CKI1 (Sme2.5_10056.1_g00002.1), which could potentially regulate eggplant anther development and may be candidate genes for rTGMS. Finally, we propose a working model of anther abortion for rTGMS in eggplant. CKI1 responds to LT stress and causes expression changes in genes related to anther development, such as 4CLL1, and the cellular structure of the tapetum becomes abnormal, causing male sterility. The findings of this study explain the underlying molecular mechanisms of male sterility in eggplant rTGMS lines.

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 580
Author(s):  
Zhixing Nie ◽  
Jianying Chen ◽  
Yunpeng Song ◽  
Hongfei Fu ◽  
Hong Wang ◽  
...  

Cytoplasmic male-sterility (CMS) is important for the utilization of crop heterosis and study of the molecular mechanisms involved in CMS could improve breeding programs. In the present study, anthers of the pepper CMS line HZ1A and its maintainer line HZ1B were collected from stages S1, S2, and S3 for transcriptome sequencing. A total of 47.95 million clean reads were obtained, and the reads were assembled into 31,603 unigenes. We obtained 42 (27 up-regulated and 15 down-regulated), 691 (346 up-regulated and 345 down-regulated), and 709 (281 up-regulated and 428 down-regulated) differentially expressed genes (DEGs) in stages S1, S2, and S3, respectively. Through Gene Ontology (GO) analysis, the DEGs were found to be composed of 46 functional groups. Two GO terms involved in photosynthesis, photosynthesis (GO:0015986) and photosystem I (GO:0009522), may be related to CMS. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, oxidative phosphorylation (ko00190) and phenylpropanoid biosynthesis (ko00940) were significantly enriched in the S1 and S2 stages, respectively. Through the analysis of 104 lipid metabolism-related DEGs, four significantly enriched KEGG pathways may help to regulate male sterility during anther development. The mitochondrial genes orf470 and atp6 were identified as candidate genes of male sterility for the CMS line HZ1A. Overall, the results will provide insights into the molecular mechanisms of pepper CMS.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zihan Liu ◽  
Sha Li ◽  
Wei Li ◽  
Qi Liu ◽  
Lingli Zhang ◽  
...  

Abstract Background Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis and various types of CMS often have different abortion mechanisms. Therefore, it is important to understand the molecular mechanisms related to anther abortion in wheat, which remain unclear at present. Results In this study, five isonuclear alloplasmic male sterile lines (IAMSLs) and their maintainer were investigated. Cytological analysis indicated that the abortion type was identical in IAMSLs, typical and stainable abortion, and the key abortive period was in the binucleate stage. Most of the 1,281 core shared differentially expressed genes identified by transcriptome sequencing compared with the maintainer in the vital abortive stage were involved in the metabolism of sugars, oxidative phosphorylation, phenylpropane biosynthesis, and phosphatidylinositol signaling, and they were downregulated in the IAMSLs. Key candidate genes encoding chalcone--flavonone isomerase, pectinesterase, and UDP-glucose pyrophosphorylase were screened and identified. Moreover, further verification elucidated that due to the impact of downregulated genes in these pathways, the male sterile anthers were deficient in sugar and energy, with excessive accumulations of ROS, blocked sporopollenin synthesis, and abnormal tapetum degradation. Conclusions Through comparative transcriptome analysis, an intriguing core transcriptome-mediated male-sterility network was proposed and constructed for wheat and inferred that the downregulation of genes in important pathways may ultimately stunt the formation of the pollen outer wall in IAMSLs. These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results was helpful for studying the abortive interaction mechanism in CMS wheat.


2020 ◽  
Author(s):  
Zhimin Wang ◽  
Shaowei Zhang ◽  
Chao Yuan ◽  
Yi Niu ◽  
Qinglin Tang ◽  
...  

Abstract Background: Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seeds. However, the molecular mechanisms of anther indehiscence-based male sterility in eggplant (Solanum melongena L.) have not been thoroughly explored. Therefore, we performed RNA-seq analysis to investigate the molecular mechanisms of anther dehiscence in eggplant. Results: We used transcriptome sequencing and qRT-PCR assays to compare the anthers of normally developing (F142) and anther indehiscent (S12) eggplant. We identified 2670 differentially expressed genes between lines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified 31 differentially expressed genes related to hormone biosynthesis. We therefore measured the contents of the phytohormones jasmonic acid (JA), IAA, GA3 and ABA in S12 and F142. There were no significant differences in IAA, GA3 or ABA levels between S12 and F142. However, JA levels were significantly lower in S12 than in F142. Five key genes in the JA signaling pathway were differentially expressed in S12 vs. F142. Of these, SmJAZ and SmJAR-like were significantly up-regulated and SmDAD1, SmLOX and SmCOI1 were down-regulated in S12 vs. F142. In DNA-protein interaction studies, SmLOX, SmAOC, SmOPR3, SmCOI1 and SmJAZ1 failed to be enriched on the chromatin of SmDAD1. Protein–protein interaction studies identified a direct interaction between SmDAD1 and SmLOX, but SmDAD1 failed to interact with SmAOC, SmOPR3, SmCOI1 and SmJAZ1. Conclusion: JA is an essential factor affecting anther dehiscence in eggplant. SmDAD1 interacts with SmLOX to alter JA levels, thereby regulating anther dehiscence. Our data represent a valuable resource for further exploring the regulatory mechanisms underlying anther dehiscence in eggplant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhimin Wang ◽  
Chao Yuan ◽  
Shaowei Zhang ◽  
Shibing Tian ◽  
Qinglin Tang ◽  
...  

Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seeds. However, the molecular mechanisms of anther indehiscence-based male sterility in eggplant (Solanum melongena L.) have not been thoroughly explored. We performed transcriptome sequencing and real-time quantitative reverse transcription-PCR (qRT-PCR) assays to compare the fertile line (F142) and male sterile line (S12) eggplant. We identified 2,670 differentially expressed genes (DEGs) between lines. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified 31 DEGs related to hormone biosynthesis. We, therefore, measured phytohormone contents, such as jasmonic acid (JA), auxin (IAA), gibberellin (GA), and abscisic acid (ABA) in S12 and F142. There were differences in IAA, GA3, and ABA levels between S12 and F142, while JA levels were significantly lower in S12 than in F142. Five key genes in the JA signaling pathway were differentially expressed in S12 vs. F142. Of these, SmJAZ1 and SmJAR1 were significantly upregulated and SmDAD1, SmLOX, and SmCOI1 were downregulated in S12 vs. F142. Protein–protein interaction studies identified a direct interaction between SmDAD1 and SmLOX, while SmDAD1 failed to interact with SmJAR1, SmCOI1, and SmJAZ1. The data represent a valuable resource for further exploration of regulatory mechanisms underlying anther dehiscence in eggplant.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 228 ◽  
Author(s):  
Jing-shuang Sun ◽  
Rui-yang Hu ◽  
Fu-ling Lv ◽  
Yan-fang Yang ◽  
Zhi-min Tang ◽  
...  

Grafted plant is a chimeric organism formed by the connection of scion and rootstock through stems, so stem growth and development become one of the important factors to affect grafted plant state. However, information regarding the molecular responses of stems secondary growth after grafting is limited. A grafted Rosa plant, with R. rugosa ‘Rosea’ as the scion (Rr_scion) grafted onto R. multiflora ‘Innermis’ as the stock (Rm_stock), has been shown to significantly improve stem thickness. To elucidate the molecular mechanisms of stem secondary growth in grafted plant, a genome-wide transcription analysis was performed using an RNA sequence (RNA-seq) method between the scion and rootstock. Comparing ungrafted R. rugosa ‘Rosea’ (Rr) and R. multiflora ‘Innermis’ (Rm) plants, there were much more differentially expressed genes (DEGs) identified in Rr_scion (6887) than Rm_stock (229). Functional annotations revealed that DEGs in Rr_scion are involved in two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: the phenylpropanoid biosynthesis metabolism and plant hormone signal transduction, whereas DEGs in Rm_stock were associated with starch and sucrose metabolism pathway. Moreover, different kinds of signal transduction-related DEGs, e.g., receptor-like serine/threonine protein kinases (RLKs), transcription factor (TF), and transporters, were identified and could affect the stem secondary growth of both the scion and rootstock. This work provided new information regarding the underlying molecular mechanism between scion and rootstock after grafting.


2018 ◽  
Vol 143 (1) ◽  
pp. 56-66
Author(s):  
Yu Bai ◽  
Ying Zhou ◽  
Xiaoqing Tang ◽  
Yu Wang ◽  
Fangquan Wang ◽  
...  

The appropriate timing of bolting and flowering is one of the keys to the reproductive success of Isatis indigotica. Several flowering regulatory pathways have been reported in plant species, but we know little about flowering regulatory in I. indigotica. In the present study, we performed RNA-seq and annotated I. indigotica transcriptome using RNA from five tissues (leaves, roots, flowers, fruit, and stems). Illumina sequencing generated 149,907,857 high-quality clean reads and 124,508 unigenes were assembled from the sequenced reads. Of these unigenes, 88,064 were functionally annotated by BLAST searches against the public protein databases. Functional classification and annotation assigned 55,991 and 23,072 unigenes to 52 gene ontology (GO) terms and 25 clusters of orthologous group (COG) categories, respectively. A total of 19,927 unigenes were assigned to 124 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 80 candidate genes related to plant circadian rhythm were identified. We also identified a number of differentially expressed genes (DEG) and 91 potential bolting and flowering-related genes from the RNA-seq data. This study is the first to identify bolting and flowering-related genes based on transcriptome sequencing and assembly in I. indigotica. The results provide foundations for the exploration of flowering pathways in I. indigotica and investigations of the molecular mechanisms of bolting and flowering in Brassicaceae plants.


2020 ◽  
Author(s):  
Xiaohui Liu ◽  
Jing Shang ◽  
Aidong Zhang ◽  
Zongwen Zhu ◽  
Dingshi Zha ◽  
...  

Abstract Background: Fresh-cut processing promotes enzymatic browning of fresh fruits and vegetables, which negatively affects the appearance of products and impacts their nutrition. We used the RNA-Seq technique to analyze the transcriptomic changes occurring during the browning of fresh-cut eggplant (Solanum melongena L.) fruit samples from a browning-sensitive cultivar and a browning-resistant cultivar to investigate the genes and molecular mechanisms involved in browning. Results: A total of 111.55 GB of high-quality reads were generated, the genomes of each sample were compared, and 83.50%–95.14% of the data was mapped to the eggplant reference genome. Furthermore, a total of 19631 differentially expressed genes were identified, among which 12 genes and two WRKY transcription factors were identified as potentially involved in enzymatic browning in fresh-cut eggplant fruit. Moreover, the 14 differentially expressed genes associated with browning were verified using qRT-PCR. Conclusions: Several genes associated with phenolic oxidation, phenylpropanoid biosynthesis, and flavonoid biosynthesis were found to be differentially regulated between the eggplant cultivars with different browning sensitivities. This work is of great theoretical significance, as it provides a basis for future molecular studies and improvement of eggplants, and lays a theoretical foundation for the development of browning-resistant fresh-cut fruits and vegetables.


2009 ◽  
Vol 134 (6) ◽  
pp. 632-640 ◽  
Author(s):  
Li Huang ◽  
Wan-zhi Ye ◽  
Ting-ting Liu ◽  
Jia-shu Cao

Cytological features of ‘Aijiaohuang’ chinese cabbage-pak-choi (Brassica campestris ssp. chinensis) Bcajh97-01A/B genic male-sterile AB line were examined to determine phenotypic reasons for male sterility. The sterile line Bcajh97-01A was found to undergo aberrant cytokinesis during male meiosis. Transcriptional profiling of the flower buds of both fertile and sterile plants was performed at the periods preceding meiosis, at the tetrad to uninucleate pollen period, and at the binucleate to mature pollen period. Transcript-derived fragments (TDFs) from corresponding genes that were expressed in flower buds at these three different stages could be divided into nine classes. We sequenced a total of 14 new TDFs that were differentially displayed at particular pollen developmental stages, including eight genes with unknown or hypothetical functions and six genes showing significant homology with known genes. This characterization of the Bcajh97-01A genic male-sterile line allowed the identification of candidate genes underlying genic male sterility.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruimin Zhang ◽  
Jingjing Chang ◽  
Jiayue Li ◽  
Guangpu Lan ◽  
Changqing Xuan ◽  
...  

AbstractAlthough male sterility has been identified as a useful trait for hybrid vigor utilization and hybrid seed production, its underlying molecular mechanisms in Cucurbitaceae species are still largely unclear. Here, a spontaneous male-sterile watermelon mutant, Se18, was reported to have abnormal tapetum development, which resulted in completely aborted pollen grains. Map-based cloning demonstrated that the causal gene Citrullus lanatus Abnormal Tapetum 1 (ClATM1) encodes a basic helix-loop-helix (bHLH) transcription factor with a 10-bp deletion and produces a truncated protein without the bHLH interaction and functional (BIF) domain in Se18 plants. qRT–PCR and RNA in situ hybridization showed that ClATM1 is specifically expressed in the tapetum layer and in microsporocytes during stages 6–8a of anther development. The genetic function of ClATM1 in regulating anther development was verified by CRISPR/Cas9-mediated mutagenesis. Moreover, ClATM1 was significantly downregulated in the Se18 mutant, displaying a clear dose effect at the transcriptional level. Subsequent dual-luciferase reporter, β-glucuronidase (GUS) activity, and yeast one-hybrid assays indicated that ClATM1 could activate its own transcriptional expression through promoter binding. Collectively, ClATM1 is the first male sterility gene cloned from watermelon, and its self-regulatory activity provides new insights into the molecular mechanism underlying anther development in plants.


Sign in / Sign up

Export Citation Format

Share Document