scholarly journals Comparative Transcriptome Analysis Reveals Stem Secondary Growth of Grafted Rosa rugosa ‘Rosea’ Scion and R. multiflora ‘Innermis’ Rootstock

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 228 ◽  
Author(s):  
Jing-shuang Sun ◽  
Rui-yang Hu ◽  
Fu-ling Lv ◽  
Yan-fang Yang ◽  
Zhi-min Tang ◽  
...  

Grafted plant is a chimeric organism formed by the connection of scion and rootstock through stems, so stem growth and development become one of the important factors to affect grafted plant state. However, information regarding the molecular responses of stems secondary growth after grafting is limited. A grafted Rosa plant, with R. rugosa ‘Rosea’ as the scion (Rr_scion) grafted onto R. multiflora ‘Innermis’ as the stock (Rm_stock), has been shown to significantly improve stem thickness. To elucidate the molecular mechanisms of stem secondary growth in grafted plant, a genome-wide transcription analysis was performed using an RNA sequence (RNA-seq) method between the scion and rootstock. Comparing ungrafted R. rugosa ‘Rosea’ (Rr) and R. multiflora ‘Innermis’ (Rm) plants, there were much more differentially expressed genes (DEGs) identified in Rr_scion (6887) than Rm_stock (229). Functional annotations revealed that DEGs in Rr_scion are involved in two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: the phenylpropanoid biosynthesis metabolism and plant hormone signal transduction, whereas DEGs in Rm_stock were associated with starch and sucrose metabolism pathway. Moreover, different kinds of signal transduction-related DEGs, e.g., receptor-like serine/threonine protein kinases (RLKs), transcription factor (TF), and transporters, were identified and could affect the stem secondary growth of both the scion and rootstock. This work provided new information regarding the underlying molecular mechanism between scion and rootstock after grafting.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Benjamin I. Laufer ◽  
J. Antonio Gomez ◽  
Julia M. Jianu ◽  
Janine M. LaSalle

Abstract Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


2021 ◽  
Author(s):  
Tanzeem Fatima ◽  
Rangachari Krishnan ◽  
Ashutosh Srivastava ◽  
Vageeshbabu S. Hanur ◽  
M. Srinivasa Rao

East Indian Sandalwood (Santalum album L.) is highly valued for its heartwood and its oil. There have been no efforts to comparative study of high and low oil yielding genetically identical sandalwood trees grown in similar climatic condition. Thus we intend to study a genome wide transcriptome analysis to identify the corresponding genes involved in high oil biosynthesis in S. album. In this study, 15 years old S. album (SaSHc and SaSLc) genotypes were targeted for analysis to understand the contribution of genetic background on high oil biosynthesis in S. album. A total of 28,959187 and 25,598869 raw PE reads were generated by the Illumina sequencing. 2.12 million and 1.811 million coding sequences were obtained in respective accessions. Based on the GO terms, functional classification of the CDS 21262, & 18113 were assigned into 26 functional groups of three GO categories; (4,168; 3,641) for biological process (5,758;4,971) cellular component and (5,108;4,441) for molecular functions. Total 41,900 and 36,571 genes were functionally annotated and KEGG pathways of the DEGs resulted 213 metabolic pathways. In this, 14 pathways were involved in secondary metabolites biosynthesis pathway in S. album. Among 237 cytochrome families, nine groups of cytochromes were participated in high oil biosynthesis. 16,665 differentially expressed genes were commonly detected in both the accessions (SaHc and SaSLc). The results showed that 784 genes were upregulated and 339 genes were downregulated in SaHc whilst 635 upregulated 299 downregulated in SaSLc S. album. RNA-Seq results were further validated by quantitative RT-PCR. Maximum Blast hits were found to be against Vitis vinifera. From this study we have identified additional number of cytochrome family in SaHc. The accessibility of a RNA-Seq for high oil yielding sandalwood accessions will have broader associations for the conservation and selection of superior elite samples/populations for further genetic improvement program.


Author(s):  
Nana Matoba ◽  
Dan Liang ◽  
Huaigu Sun ◽  
Nil Aygün ◽  
Jessica C. McAfee ◽  
...  

AbstractBackgroundAutism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of three common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) using the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD.MethodsWe performed an association study on 6,222 case-pseudocontrol pairs from SPARK and meta-analyzed with a previous GWAS. We integrated gene regulatory annotations to map non-coding risk variants to their regulated genes. Further, we performed a massively parallel reporter assay (MPRA) to identify causal variant(s) within a novel risk locus.ResultsWe identified one novel GWS locus from the SPARK GWAS. The meta-analysis identified four significant loci, including an additional novel locus. We observed significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. The MPRA identified one variant at the novel locus with strong impacts on gene regulation (rs7001340), and expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and pre-natal brains.ConclusionsBy integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.


2021 ◽  
Author(s):  
Moataz Dowaidar

The discovery of a genome-wide correlation with obesity-related genes hasrevealed new information about the genetics of obesity. Given the lowproportion of obesity heritability explained by available SNPs, it's not shockingthat these SNPs aren't scientifically effective as methods for assessing whowould acquire obesity. The roles of the majority of loci, the majority of whichmap to non-coding sequences, will take thorough analysis to determine theresponsible gene at each locus, which may not be the closest gene. Thismechanistic information, as well as the resulting elucidation of thepathophysiology of obesity, will allow the creation of new therapies, whichcould be the primary advantage of these genetic discoveries.Fortunately, a lack of mechanistic information hasn't stopped researchers fromusing SNPs and genetic risk ratings to shed light on how obesity biologyinteracts with environmental and lifestyle influences. These findings suggestthat an unhealthy lifestyle may amplify the genetic risk of obesity, despite thefact that environmental studies of obesity genes may be distorted byinaccuracies in diet and physical activity measurement. More research isrequired to confirm this theory and to identify the specific dietary components(such as sugar-sweetened beverages) that interfere with genetic variants. Thisstudy could contribute to personalized obesity prevention and care measures inthe future (pending confirmation in clinical trials of genetic-risk-guidedinterventions). Obesity genetics has offered researchers the opportunity toexamine causal interactions between obesity and its various possiblecomplications. However, since the majority of the studies discussed above wereconducted on people of European ethnicity, more research is required inminority ethnic groups with a high risk of obesity to understand the role ofbiology, climate, and relationships among these factors in explaining theirincreased risk.


2019 ◽  
Vol 20 (21) ◽  
pp. 5419 ◽  
Author(s):  
Gao-Feng Zhou ◽  
Li-Ping Zhang ◽  
Bi-Xian Li ◽  
Ou Sheng ◽  
Qing-Jiang Wei ◽  
...  

Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. As a dominant abiotic stress factor in soil, boron (B) deficiency stress has impacted the growth and development of citrus in the red soil region of southern China. In the present work, we performed a genome-wide identification and characterization of lncRNAs in response to B deficiency stress in the leaves of trifoliate orange (Poncirus trifoliata), an important rootstock of citrus. A total of 2101 unique lncRNAs and 24,534 mRNAs were predicted. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed for a total of 16 random mRNAs and lncRNAs to validate their existence and expression patterns. Expression profiling of the leaves of trifoliate orange under B deficiency stress identified 729 up-regulated and 721 down-regulated lncRNAs, and 8419 up-regulated and 8395 down-regulated mRNAs. Further analysis showed that a total of 84 differentially expressed lncRNAs (DELs) were up-regulated and 31 were down-regulated, where the number of up-regulated DELs was 2.71-fold that of down-regulated. A similar trend was also observed in differentially expressed mRNAs (DEMs, 4.21-fold). Functional annotation of these DEMs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and the results demonstrated an enrichment of the categories of the biosynthesis of secondary metabolites (including phenylpropanoid biosynthesis/lignin biosynthesis), plant hormone signal transduction and the calcium signaling pathway. LncRNA target gene enrichment identified several target genes that were involved in plant hormones, and the expression of lncRNAs and their target genes was significantly influenced. Therefore, our results suggest that lncRNAs can regulate the metabolism and signal transduction of plant hormones, which play an important role in the responses of citrus plants to B deficiency stress. Co-expression network analysis indicated that 468 significantly differentially expressed genes may be potential targets of 90 lncRNAs, and a total of 838 matched lncRNA-mRNA pairs were identified. In summary, our data provides a rich resource of candidate lncRNAs and mRNAs, as well as their related pathways, thereby improving our understanding of the role of lncRNAs in response to B deficiency stress, and in symptom formation caused by B deficiency in the leaves of trifoliate orange.


2019 ◽  
Vol 116 (12) ◽  
pp. 5653-5658 ◽  
Author(s):  
Lin Shao ◽  
Feng Xing ◽  
Conghao Xu ◽  
Qinghua Zhang ◽  
Jian Che ◽  
...  

Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shulin Zhang ◽  
Zailong Tian ◽  
Haipeng Li ◽  
Yutao Guo ◽  
Yanqi Zhang ◽  
...  

Abstract Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.


2019 ◽  
Author(s):  
Alexey A Shadrin ◽  
Sören Mucha ◽  
David Ellinghaus ◽  
Mary B Makarious ◽  
Cornelis Blauwendraat ◽  
...  

ABSTRACTWe aimed to identify shared genetic background between multiple system atrophy (MSA) and autoimmune diseases by using the conjFDR approach. Our study showed significant genetic overlap between MSA and inflammatory bowel disease and identified DENND1B, C7, and RSP04 loci, which are linked to significant changes in methylation or expression levels of adjacent genes. We obtained evidence of enriched heritability involving immune/digestive categories. Finally, an MSA mouse model showed dysregulation of the C7 gene in the degenerating midbrain compared to wildtype mice. The results identify novel molecular mechanisms and implicate immune and gut dysfunction in MSA pathophysiology.


2020 ◽  
Author(s):  
Shan Feng ◽  
Hongcheng Fang ◽  
Xia Liu ◽  
Yuhui Dong ◽  
Qingpeng Wang ◽  
...  

Abstract Background: Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is an important walnut production problem in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance , the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood.Results: The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose-susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 and F423 fruit bracts to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14525 DELs were identified, including 10645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides, such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data.Conclusions: The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.


Sign in / Sign up

Export Citation Format

Share Document