scholarly journals KAT6B-related disorder in a patient with a novel frameshift variant (c.3925dup)

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yo Hamaguchi ◽  
Mikihiro Aoki ◽  
Satoshi Watanabe ◽  
Hiroyuki Mishima ◽  
Koh-ichiro Yoshiura ◽  
...  

AbstractHeterozygous pathogenic variants in the KAT6B gene, which encodes lysine acetyltransferase 6B, have been identified in patients with congenital rare disorders, including genitopatellar syndrome and Say-Barber-Biesecker-Young-Simpson syndrome. Herein, we report another Japanese patient with a KAT6B-related disorder and a novel de novo heterozygous variant in exon 18 of KAT6B [c.3925dup, p.(Glu1309fs*33)], providing further evidence that truncating variants in exon 17 and in the proximal region of exon 18 are associated with genitopatellar syndrome-like phenotypes.

2022 ◽  
pp. 097321792110688
Author(s):  
Francisco Ribeiro-Mourão ◽  
Ana Vilan ◽  
Sara Passos-Silva ◽  
Fernando Silveira ◽  
Miguel Leão ◽  
...  

Arthrogryposis multiplex congenita (AMC) is a heterogeneous condition comprising congenital multiple joint contractures, and it is secondary to decreased fetal mobility following environmental/genetic abnormalities. BICD2 pathogenic variants have been associated with autosomal dominant spinal muscular atrophy with lower extremity predominance (SMALED2). We report the case of a newborn with decreased fetal movements and ventriculomegaly diagnosed in utero, born with severe AMC, multiple bone fractures, congenital hip dislocation, and respiratory insufficiency that led to neonatal death. His mother had AMC diagnosis without established etiology. Her phenotype characterization was key to guide the genetic investigation. A BICD 2 heterozygous variant (NM_001003800.1; c.2080C > T; p. [Arg694Cys]) was detected both in the mother and the newborn. This variant had previously been reported in 3 cases, all having de novo severe SMALED-type 2B (MIM#618291) phenotype. This is the first report of this variant (p. [Arg694Cys]) presenting with an inherited, severe, and lethal phenotype associated to intrafamilial variability, suggesting a more complex phenotype-genotype correlation than previously stated.


2020 ◽  
Vol 182 (1) ◽  
pp. K1-K6 ◽  
Author(s):  
Yunting Lin ◽  
Yanna Cai ◽  
Jianan Xu ◽  
Chunhua Zeng ◽  
Huiying Sheng ◽  
...  

Objective X-linked hypophosphatemic rickets (XLHR) is the most common form of inherited rickets caused by pathogenic variants of PHEX gene with an X-linked dominant inheritance pattern. Precise molecular diagnosis of pathogenic variant will benefit the genetic counseling and prenatal diagnosis for the family with XLHR. Here, we presented an ‘isolated’ germline mosaicism in the phenotypically normal father of a girl with XLHR. Methods and results For the initial molecular screen of PHEX gene, DNA samples of the proband and her parents were extracted from their peripheral blood samples respectively. Sanger sequencing found a ‘de novo’ novel heterozygous variant, c.1666C>T(p.Q556X), at the PHEX gene in the proband, but not in her phenotypically healthy parents. Due to an occasional abnormality of his serum phosphate previously, further examinations for the father were taken to exclude the possibility of paternal mosaicism. Eight samples from different tissues were analyzed for PHEX gene by Sanger sequencing. Surprisingly, one ‘isolated’ germline mosaicism was detected only in his sperm with an estimated frequency of 26.67%. The mosaic allele was identical to the c.1666C>T(p.Q556X) variant in the proband. Conclusions This is the first case of ‘isolated’ germline mosaicism with pathogenic PHEX variant. Our study provides accurate diagnosis and valuable counseling for this family. This report also alerts clinicians and geneticists to exclude the possibility of the isolated germline mosaicism and prevent intrafamilial recurrences of inherited diseases.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1395
Author(s):  
Valentina Bruni ◽  
Cristina Barbara Spoleti ◽  
Andrea La Barbera ◽  
Vincenzo Dattilo ◽  
Emma Colao ◽  
...  

Achondrogenesis type II (ACG2) is a lethal skeletal dysplasia caused by dominant pathogenic variants in COL2A1. Most of the variants found in patients with ACG2 affect the glycine residue included in the Gly-X-Y tripeptide repeat that characterizes the type II collagen helix. In this study, we reported a case of a novel splicing variant of COL2A1 in a fetus with ACG2. An NGS analysis of fetal DNA revealed a heterozygous variant c.1267-2_1269del located in intron 20/exon 21. The variant occurred de novo since it was not detected in DNA from the blood samples of parents. We generated an appropriate minigene construct to study the effect of the variant detected. The minigene expression resulted in the synthesis of a COL2A1 messenger RNA lacking exon 21, which generated a predicted in-frame deleted protein. Usually, in-frame deletion variants of COL2A1 cause a phenotype such as Kniest dysplasia, which is milder than ACG2. Therefore, we propose that the size and position of an in-frame deletion in COL2A1 may be relevant in determining the phenotype of skeletal dysplasia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xianyu Liu ◽  
Qiyang Shen ◽  
Guo Zheng ◽  
Hu Guo ◽  
Xiaopeng Lu ◽  
...  

Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE).Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure.Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability.Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
pp. jmedgenet-2020-107427
Author(s):  
Aviel Ragamin ◽  
Carolina C Gomes ◽  
Karen Bindels-de Heus ◽  
Renata Sandoval ◽  
Angelia V Bassenden ◽  
...  

BackgroundPathogenic germline variants in Transient Receptor Potential Vanilloid 4 Cation Channel (TRPV4) lead to channelopathies, which are phenotypically diverse and heterogeneous disorders grossly divided in neuromuscular disorders and skeletal dysplasia. We recently reported in sporadic giant cell lesions of the jaws (GCLJs) novel, somatic, heterozygous, gain-of-function mutations in TRPV4, at Met713.MethodsHere we report two unrelated women with a de novo germline p.Leu619Pro TRPV4 variant and an overlapping systemic disorder affecting all organs individually described in TRPV4 channelopathies.ResultsFrom an early age, both patients had several lesions of the nervous system including progressive polyneuropathy, and multiple aggressive giant cell-rich lesions of the jaws and craniofacial/skull bones, and other skeletal lesions. One patient had a relatively milder disease phenotype possibly due to postzygotic somatic mosaicism. Indeed, the TRPV4 p.Leu619Pro variant was present at a lower frequency (variant allele frequency (VAF)=21.6%) than expected for a heterozygous variant as seen in the other proband, and showed variable regional frequency in the GCLJ (VAF ranging from 42% to 10%). In silico structural analysis suggests that the gain-of-function p.Leu619Pro alters the ion channel activity leading to constitutive ion leakage.ConclusionOur findings define a novel polysystemic syndrome due to germline TRPV4 p.Leu619Pro and further extend the spectrum of TRPV4 channelopathies. They further highlight the convergence of TRPV4 mutations on different organ systems leading to complex phenotypes which are further mitigated by possible post-zygotic mosaicism. Treatment of this disorder is challenging, and surgical intervention of the GCLJ worsens the lesions, suggesting the future use of MEK inhibitors and TRPV4 antagonists as therapeutic modalities for unmet clinical needs.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Surajit Bhattacharya ◽  
Hayk Barseghyan ◽  
Emmanuèle C. Délot ◽  
Eric Vilain

Abstract Background Whole genome sequencing is effective at identification of small variants, but because it is based on short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-based SV annotation software has seen little development, and currently available SV annotation tools do not provide sufficient information for determination of variant pathogenicity. Results We developed an R-based package, nanotatoR, which provides comprehensive annotation as a tool for SV classification. nanotatoR uses both external (DGV; DECIPHER; Bionano Genomics BNDB) and internal (user-defined) databases to estimate SV frequency. Human genome reference GRCh37/38-based BED files are used to annotate SVs with overlapping, upstream, and downstream genes. Overlap percentages and distances for nearest genes are calculated and can be used for filtration. A primary gene list is extracted from public databases based on the patient’s phenotype and used to filter genes overlapping SVs, providing the analyst with an easy way to prioritize variants. If available, expression of overlapping or nearby genes of interest is extracted (e.g. from an RNA-Seq dataset, allowing the user to assess the effects of SVs on the transcriptome). Most quality-control filtration parameters are customizable by the user. The output is given in an Excel file format, subdivided into multiple sheets based on SV type and inheritance pattern (INDELs, inversions, translocations, de novo, etc.). nanotatoR passed all quality and run time criteria of Bioconductor, where it was accepted in the April 2019 release. We evaluated nanotatoR’s annotation capabilities using publicly available reference datasets: the singleton sample NA12878, mapped with two types of enzyme labeling, and the NA24143 trio. nanotatoR was also able to accurately filter the known pathogenic variants in a cohort of patients with Duchenne Muscular Dystrophy for which we had previously demonstrated the diagnostic ability of OGM. Conclusions The extensive annotation enables users to rapidly identify potential pathogenic SVs, a critical step toward use of OGM in the clinical setting.


2021 ◽  
Vol 9 ◽  
pp. 232470962110146
Author(s):  
Erin Finn ◽  
Kimberly Kripps ◽  
Christina Chambers ◽  
Michele Rapp ◽  
Naomi J. L. Meeks ◽  
...  

Lipoid congenital adrenal hyperplasia (LCAH) is typically inherited as an autosomal recessive condition. There are 3 reports of individuals with a dominantly acting heterozygous variant leading to a clinically significant phenotype. We report a 46,XY child with a novel heterozygous intronic variant in STAR resulting in LCAH with an attenuated genital phenotype. The patient presented with neonatal hypoglycemia and had descended testes with a fused scrotum and small phallus. Evaluation revealed primary adrenal insufficiency with deficiencies of cortisol, aldosterone, and androgens. He was found to have a de novo heterozygous novel variant in STAR: c.65-2A>C. We report a case of a novel variant and review of other dominant mutations at the same position in the literature. Clinicians should be aware of the possibility of attenuated genital phenotypes of LCAH and the contribution of de novo variants in STAR at c.65-2 to the pathogenesis of that phenotype.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 968
Author(s):  
Julien Van Gils ◽  
Frederique Magdinier ◽  
Patricia Fergelot ◽  
Didier Lacombe

The Rubinstein-Taybi syndrome (RSTS) is a rare congenital developmental disorder characterized by a typical facial dysmorphism, distal limb abnormalities, intellectual disability, and many additional phenotypical features. It occurs at between 1/100,000 and 1/125,000 births. Two genes are currently known to cause RSTS, CREBBP and EP300, mutated in around 55% and 8% of clinically diagnosed cases, respectively. To date, 500 pathogenic variants have been reported for the CREBBP gene and 118 for EP300. These two genes encode paralogs acting as lysine acetyltransferase involved in transcriptional regulation and chromatin remodeling with a key role in neuronal plasticity and cognition. Because of the clinical heterogeneity of this syndrome ranging from the typical clinical diagnosis to features overlapping with other Mendelian disorders of the epigenetic machinery, phenotype/genotype correlations remain difficult to establish. In this context, the deciphering of the patho-physiological process underlying these diseases and the definition of a specific episignature will likely improve the diagnostic efficiency but also open novel therapeutic perspectives. This review summarizes the current clinical and molecular knowledge and highlights the epigenetic regulation of RSTS as a model of chromatinopathy.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Giada Moresco ◽  
Jole Costanza ◽  
Carlo Santaniello ◽  
Ornella Rondinone ◽  
Federico Grilli ◽  
...  

Abstract Background De novo pathogenic variants in the DDX3X gene are reported to account for 1–3% of unexplained intellectual disability (ID) in females, leading to the rare disease known as DDX3X syndrome (MRXSSB, OMIM #300958). Besides ID, these patients manifest a variable clinical presentation, which includes neurological and behavioral defects, and abnormal brain MRIs. Case presentation We report a 10-year-old girl affected by delayed psychomotor development, delayed myelination, and polymicrogyria (PMG). We identified a novel de novo missense mutation in the DDX3X gene (c.625C > G) by whole exome sequencing (WES). The DDX3X gene encodes a DEAD-box ATP-dependent RNA-helicase broadly implicated in gene expression through regulation of mRNA metabolism. The identified mutation is located just upstream the helicase domain and is suggested to impair the protein activity, thus resulting in the altered translation of DDX3X-dependent mRNAs. The proband, presenting with the typical PMG phenotype related to the syndrome, does not show other clinical signs frequently reported in presence of missense DDX3X mutations that are associated with a most severe clinical presentation. In addition, she has brachycephaly, never described in female DDX3X patients, and macroglossia, that has never been associated with the syndrome. Conclusions This case expands the knowledge of DDX3X pathogenic variants and the associated DDX3X syndrome phenotypic spectrum.


Sign in / Sign up

Export Citation Format

Share Document